REFERENCES BIBLIOGRAPHIQUES DE LA THESE

  1. Abbas, P.J., Brown, C.J., Shallop, J.K., Firszt, J.B., Hughes, M.L., Hong, S.H., & Staller, S.J. (1999). Summary of results using the Nucleus CI24M implant to record the electrically evoked compound action potential. Ear & Hearing, 20, 45-59.
  2. Alloway, K.D., & Burton, H. (1991). Differential effects of GABA and bicuculline on rapidly- and slowly-adapting neurons in primary somatosensory cortex of primates. Experimental Brain Research, 85, 598-610.
  3. Alloway, K.D., Rosenthal, P., & Burton, H. (1989). Quantitative measurements of receptive field changes during antagonism of GABAergic transmission in primary somatosensory cortex of cats. Experimental Brain Research, 78, 514-532.
  4. Arlinger, S., Gatehouse, S., Bentler, R.A., Byrne, D., Cox, R.M., Dirks, D.D., Humes, L., Neuman, A., Ponton, C., Robinson, K., Silman, S., Summerfield, A.Q., Turner, C.W., Tyler, R.S., & Willot, J.F. (1996). Report of the Eriksholm workshop on auditory deprivation and acclimatization. Ear & Hearing, 17, 87S-98S.
  5. Batuev, A.S., Alexandrov, A.A., Scheynikov, N.A., Kcharazia, V.N., & Chan, C.A. (1989). The role of inhibitory processes in the formation of functional properties of neurons in the vibrissal projection zone of the cat somatosensory cortex. Experimental Brain Research, 76, 198-206.
  6. Benson, C.G., Gross, J.S., Suneja, S.K., & Potashner, S.J. (1997). Synaptophysin immunoreactivity in the cochlear nucleus after unilateral cochlear or ossicular removal. Synapse, 25, 243-257.
  7. Bilak, M., Kim, J., Potashner, S.J., Bohne, B.A., & Morest, D.K. (1997). New growth of axons in the cochlear nucleus of adult chinchillas after acoustic trauma. Experimental Neurology, 147, 256-268.
  8. Bilecen, D., Seifritz, E., Radü, E.W., Schmid, N., Wetzel, S., Probst, R., & Scheffler, K. (2000). Cortical reorganization after acute unilateral hearing loss traced by fMRI. Neurology, 54, 765-767.
  9. Blamey, P.J., Pyman, B.C., Gordon, M., Clark, G.M., Brown, A.M., Dowell, R.C., & Hollow, R.D. (1992). Factors predicting postoperative sentence scores in postlinguistically deaf adult cochlear implant patients. Annals of Otology, Rhinology & Laryngology, 101, 342-348.
  10. Boettcher, F.A., & Salvi, R.J. (1993). Functional changes in the ventral cochlear nucleus following acute acoustic overstimulation. Journal of the Acoustical Society of America, 94, 2123-2134.
  11. Boothroyd, A. (1993). Recovery of speech perception performance after prolonged auditory deprivation : case study. Journal of the American Academy of Audiology, 4, 331-336.
  12. Brown, C.J., Abbas, P.J., & Gantz, B.J. (1990). Electrically evoked whole-nerve action potential: data from human cochlear implant users. Journal of the Acoustical Society of America, 88, 1385-1391.
  13. Brown, C.J., Abbas, P.J., & Gantz, B.J. (1998). Preliminary experience with neural response telemetry system in the Nucleus CI24M cochlear implant. American Journal of Otology, 19, 320-327.
  14. Brown, C.J., Hughes, M.L., Luk, B., Abbas, P.J., Wolaver, A.A., & Gervais, J.P. (2000). The relationship between ECAP and EABR thresholds and levels used to program the Nucleus 24 speech processor: data from adults. Ear & Hearing, 21, 151-163.
  15. Buss, E., Hall, J.W. III, Grose, J.H., Hatch, D.R. (1998). Perceptual consequences of peripheral hearing loss: do edge effects exist for abrupt cochlear lesions? Hearing Research, 125, 98-108.
  16. Calford, M.B., & Tweedale, R. (1988). Immediate and chronic changes in responses of somatosensory cortex in adult flying-fox after digit amputation. Nature, 332, 446-448.
  17. Calford, M.B., & Tweedale, R. (1991). Acute changes in cutaneous receptive fields in primary somatosensory cortex after digit denervation in adult flying-fox. Journal of Neurophysiology, 65, 178-187.
  18. Caspary, D.M., Rybak, L.P., & Faingold, C.L. (1984). Baclofen reduces tone-evoked activity of cochlear nucleus neurons. Hearing Research, 13, 113-122.
  19. Charlet de Sauvage, R., Cazals, Y., Erre, J.P., & Aran, J.M. (1983). Acoustically derived auditory nerve action potential evoked by electrical stimulation: An estimation of the waveform of single unit contribution. Journal of the Acoustical Society of America, 73, 616-627.
  20. Cheng, A. K., Grant, G.D., & Niparko, J.K. (1999). Meta-analysis of pediatric cochlear implant literature. Annals of Otology, Rhinology, & Laryngology, 108, 124-128.
  21. Chino, Y.M., Kaas, J.H., Smith III, E.L., Langston, A.L., & Cheng, H. (1992). Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina. Vision Research,32, 789-796.
  22. D’Amelio, F., Fox, R.A., Wu, L.C., & Daunton, N.G. (1996). Quantitative changes of GABA-immunoreactive cells in the hindlimb presentation of the rat somatosensory cortex after 14-day hindlimb unloading by tail suspension. Journal of Neuroscience Research, 44, 532-539.
  23. Demany, L. (1985). Perceptual training in frequency discrimination. Journal of the Acoustical Society of America, 78,1118-1120.
  24. Dietrich, V., Nieschalk, M., Stoll, W., Rajan, R., & Pantev, C. (2001). Cortical reorganization in patients with frequency cochlear hearing loss. Hearing Research, 158, 95-101.
  25. Donoghue, J.P., Suner, S., & Sanes, J.N. (1990). Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesions. Experimental Brain Research, 79, 492-503.
  26. Edeline, J.M. (1999). Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Progress in Neurobiology, 57, 165-224.
  27. Edeline, J.M., Pham, P., & Weinberger, N.M.(1993). Rapid development of learning-induced receptive field plasticity in the auditory cortex. Behavioral Neuroscience, 107, 539-551.
  28. Eggermont, J.J., & Komyia, H. (2000). Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood. Hearing Research, 142, 89-101.
  29. Elbert, T., Flor, H., Birbaumer, N., Knecht, S., Hampson, S., Larbig, W., & Taub, E. (1994). Extensive reorganization of the somatosensory cortex in adult humans after nervous system injury. NeuroReport, 5, 2593-2597.
  30. Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270: 305-7.
  31. Emmerich, D.S., Fantini, D.A., & Brown, W.S. (1986). Frequency discrimination of tones presented in filtered noise. Journal of the Acoustical Society of America, 80, 1668-1672.
  32. Evans, E.F., & Nelson, P.G. (1973). The response of single neurones in the cochlear nucleus of the cat as a function of their location and the anaesthetic state. Experimental Brain Research, 17, 402-427.
  33. Evans, E.F., & Zhao, W. (1993). Varieties of inhibition in the processing and control of processing in the mammalian cochlear nucleus. Progress in Brain Research, 97, 117-126.
  34. Flor, H., Elbert, T., Knecht, S., Wienbruch, C., Pantev, C., Birbaumer, N., Larbig, W., & Taub, E. (1995). Phantom limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature, 375, 482-484.
  35. Frachet, B., Minvielle, E., Chouard, C.H., Meyer, B., Narcy, P., Garabédian, E.N., Sterkers, O., Roulleau, P., & Manac’h, Y. (1995). Final report on 1992-1993 children’s cochlear implant at the Assistance Publique-Hôpitaux de Paris. Advances in Otolaryngology, 50, 102-107.
  36. Franck, K.H., & Norton, S.J. (2001). Estimation of psychophysical levels using the electrically evoked compound action potential measured with the neural response telemetry capabilities of Cochlear Corporation's CI24M device. Ear & Hearing, 22, 289-299.
  37. Galvan, V.V., & Weinberger, N.M. (2002). Long-term consolidation and retention of learning-induced tuning plasticity in the auditory cortex of the Guinea pig. Neurobiology of Learning and Memory, 77, 78-108.
  38. Garraghty, P.E., & Kaas, J.H. (1991). Functional reorganization in adult monkey thalamus after peripheral nerve injury. Neuroreport, 12, 747-750.
  39. Garraghty, P.E., LaChica, E.A., & Kaas, J.H. (1991). Injury-induced reorganization of somatosensory cortex is accompanied by reductions in GABA staining. Somatosensory and Motor Research, 8, 347-354.
  40. Gatehouse, S. (1989). Apparent auditory deprivation effects of late onset : the role of presentation level. Journal of the Acoustical Society of America, 86, 2103-2016.
  41. Gelfand, S.A., Silman, S., & Ross, L. (1987). Long-term effects of monaural, binaural and no amplification in subjects with bilateral hearing loss. Scandinavian Audiology, 16, 201-207.
  42. Gilbert, C.D., Wiesel, T.N. (1992). Receptive field dynamics in adult primary visual cortex. Nature, 356, 150-2.
  43. Green, D.M. (1988). Profile analysis. Oxford: Oxford University Press.
  44. Hall, R.D. (1990). Estimation of surviving spiral ganglion cells in the deaf rat using the electrically evoked auditory brainstem response. Hearing Research, 45, 123-136.
  45. Harrison, R. V., Nagasawa, A., Smith, D. W., Stanton, S., & Mount, R. J. (1991). Reorganization of auditory cortex after neonatal high frequency cochlear hearing loss. Hearing Research, 54, 11-19.
  46. Hughes, M.L., Brown, C.J., Abbas P.J., Wolaver, A.A., & Gervais, J.P. (2000). Comparison of ECAP thresholds with MAP levels in the Nucleus 24 cochlear implant: data from children. Ear & Hearing, 21, 164-174.
  47. Hurley, R.M. (1999). Onset of auditory deprivation. Journal of the American Academy of Audiology, 10, 529-534.
  48. Illing, R.B. (2001). Activity-dependent plasticity in the adult auditory brainstem. Audiology & Neurootology, 6, 319-345
  49. Illing, R.B., Forster, C.R, & Horvath, M. (1997). Evaluating the plasticity potential of the auditory brainstem nucleus in the rat. American Journal of Otology, 18 Suppl 6, 52-53.
  50. Illing, R.B., & Horvath, M. (1995). Re-emergence of GAP-43 in the cochlear nucleus and superior olive following cochlear ablation in the rat. Neuroscience Letters, 194, 9-12.
  51. Irvine D.R.F. (2000). Injury- and use-related plasticity in the adult auditory system. Journal of Communication Disorders, 33, 293-311.
  52. Irvine D.R.F., & Rajan, R. (1994). Plasticity of frequency organization in inferior colliculus of adult cats with unilateral restricted cochlear lesions. In Abstracts of the Seventeenth Annual Meeting of the Association for Research in Otolaryngology (pp 21).
  53. Irvine D.R.F., & Rajan, R. (1995). Plasticity in the mature auditory system. In G.A. Manley, G.M. Klump, C. Köppl, C. Fastl, H. Oeckinghaus (Eds), Advances in Hearing Research (pp 3-23). Singapore: World Scientific.
  54. Irvine D.R.F., & Rajan, R. (1996). Injury- and use-related plasticity in the primary sensory cortex of adult mammals : possible relationship to perceptual learning. Clinical and Experimental Pharmacology and Physiology, 23, 939-947.
  55. Irvine, D. R. F., & Rajan, R. (1997). Injury-induced reorganization of frequency maps in adult auditory cortex: the role of unmasking of normally-inhibited inputs. Acta Otolaryngologica (Stockholm), suppl 532, 39-45.
  56. Irvine, D. R. F., Rajan, R., & McDermott, H.J. (2000). Injury-induced reorganization in adult auditory cortex and its perceptual consequences. Hearing Research, 147, 188-199.
  57. Irvine, D. R. F., Martin, R.L., Klimkeit, E., & Smith, R. (2000). Specificity of perceptual learning in a frequency discrimination task. Journal of the Acoustical Society of America, 108, 2964-2968.
  58. Jacobs, K. D., & Donoghue, J.P. (1991). Reshaping the cortical motor by unmasking latent intracortical connections. Science, 251, 944-947.
  59. Jones, E.G. (1993). GABAergic neurons and their role in cortical plasticity in primates. Cerebral Cortex, 3, 361-372. 
  60. Jones, E.G., Pons, T.P. (1998). Thalamic and brainstem contributions to large-scale plasticity of primate somatosensory cortex. Science, 282, 1121-1125.
  61. Kaas, J.H. (1991). Plasticity of sensory and motor maps in adult mammals. Annual Review of Neuroscience, 14, 137-167.
  62. Kaas, J.H. (1995). The reorganization of sensory and motor maps in adult mammals. In M.S. Gazzaniga (Ed), The Cognitive Neurosciences (pp 51-72). Cambridge: MIT.
  63. Kaas, J.H., Krubitzer, L.A., Chino, Y.M., Langston, A.L., Polley, E.H., Blair, N. (1990). Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science, 248, 229-31.
  64. Kakigi, A., Hirakawa, H., Harel, N., Mount, R J., & Harrison, R. V. (2000). Tonotopic mapping in auditory cortex of the adult chinchilla with amikacin-induced cochlear lesions. Audiology, 39, 153-160.
  65. Kaltenbach, J.A., Czaja, J.M., & Kaplan, C.R. (1992). Changes in the tonotopic map of the dorsal cochlear nucleus following induction of cochlear lesions by exposure to intense sound. Hearing Research, 59, 213-223.
  66. Kaltenbach, J.A., & McCaslin, D. (1996). Increases in spontaneous activity in the dorsal cochlear nucleus following exposure to high intensity sound: A possible neural correlate of tinnitus. Auditory Neuroscience, 3, 57-78.
  67. Kileny, P.R, Zwolan, T.A., & Ashbaugh, C. (2001). The influence of age at implantation on performance with a cochlear implant in children. Otology & Neurotology, 22, 42-46.
  68. Kim, J., Morest, D.K., & Bohne, B.A. (1997). Degeneration of axons in the brainstem of the chinchilla after auditory overstimulation. Hearing Research, 103, 169-191.
  69. Kimura, M., & Eggermont, J.J. (1999). Effects of acute pure tone induced hearing loss on response properties in three auditory cortical fields in cat. Hearing Research, 135, 146-162.
  70. Levitt, H. (1971). Transformed up-down methods in psychoacoustics. Journal of the Acoustical Society of America, 49, 467-477.
  71. Liberman, M.C., & Kiang, N.Y.S. (1978). Acoustic trauma in cats. Cochlear pathology and auditory nerve activity. Acta Otolaryngologica (Stockholm), 358, 1-63.
  72. Lusted, H., Shelton, C., & Simmons, S. (1984). Comparison of electrode sites in electrical stimulation of the cochlea. Laryngoscope, 94, 878-882.
  73. McDermott, H.J., Lech, M., Kornblum, M.S., & Irvine, D.R.F. (1998). Loudness perception and frequency discrimination in subjects with steeply sloping hearing loss: possible correlates of neural plasticity. Journal of the Acoustical Society of America, 104, 2314-2325.
  74. McFadden, S.L., Kasper, C., Ostrowski, J., Ding, D., & Salvi, R.J. (1998). Effects of inner hair cell loss on inferior colliculus evoked potential thresholds, amplitudes and forward masking functions in chinchillas. Hearing Research, 120, 121-132.
  75. Menning, H., Roberts, L.E., & Pantev, C. (2000). Plastic changes in the auditory cortex induced by intensive frequency discrimination. Neuroreport, 11, 817-822.
  76. Merzenich, M.M., Kaas, J.H., Wall, J., Nelson, R.J., Sur, M., & Felleman, D. (1983a). Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience, 8, 33-55.
  77. Merzenich, M.M., Kaas, J.H., Wall, J., Sur, M., Nelson, R.J., & Felleman, D. (1983b). Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience, 10, 639-665.
  78. Merzenich, M.M., Nelson, R.J., Stryker, M.P., Cynader, M.S., Schoppmann, A., & Zook, J.M. (1984). Somatosensory cortical map changes following digit amputation in adult monkeys. The Journal of Comparative Neurology, 224, 591-605.
  79. Meyer, V., Bertram, B., & Lenarz, T. (1995). Performance comparisons in congenitally deaf children with different ages of implantation. Advance in Otorhinolaryngology, 50, 129-133.
  80. Moore, B.C.J. (1973). Frequency difference limens for short duration tones. Journal of the Acoustical Society of America, 54, 610-619.
  81. Moore, B.C.J. (1989). An introduction to the psychology of hearing. 3rd ed. London: Academic.
  82. Moore, B.C.J. (2001). Dead regions in the cochlea: diagnosis, perceptual consequences, and implications for the fitting of hearing aids. Trends in Amplification, 5, 134.
  83. Moore, B.C.J., & Alcantara, J.I. (2001). The use of psychophysical tuning curves to explore dead regions in the cochlea. Ear & Hearing, 22, 268-278.
  84. Moore, B.C.J., & Glasberg, B.R. (1989). Mechanisms underlying the frequency discrimination of pulsed tones and the detection of frequency modulation. Journal of the Acoustical Society of America, 86, 1722-1732.
  85. Moore, B.C.J., & Peters, R.W. (1992). Pitch discrimination and phase sensitivity in young and elderly subjects and its relationship to frequency selectivity. Journal of the Acoustical Society of America, 91, 2881-2193.
  86. Moore, B.C.J., Huss, M., Vickers, D.A., Glasberg, B.R., & Alcantara, J.I. (2000). A test for the diagnosis of dead regions in the cochlea. British Journal of Audiology, 34, 205-224.
  87. Moore, D.R. (1985). Postnatal development of the mammalian central auditory system and the neural consequences of auditory deprivation. Acta Otolaryngologica (Stockholm), 421(suppl), 19-30.
  88. Morest, D.K., Kim, J., & Bohne, B.A. (1997). Neuronal and transneuronal degeneration of auditory axons in the brainstem after cochlear lesions in the chinchilla : cochleotopic and non-cochleotopic patterns. Hearing Research, 103, 151-168.
  89. Morest, D.K., Kim, J., Potashner, S.J., & Bohne, B.A. (1998). Long-term degeneration in the cochlear nerve and cochlear nucleus of the adult chinchilla following acoustic overstimulation. Microscopy Research and Technique, 41, 205-216.
  90. Moulin, A. (2000a). Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. I. Intersubject variability and consequences on the DPOAE-gram. Journal of the Acoustical Society of America, 107, 1460-1470.
  91. Moulin, A. (2000b). Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs. Journal of the Acoustical Society of America, 107, 1471-1486.
  92. Nadol, J.B. Jr, Young, Y.S., & Glynn, R.J. (1989). Survival of spiral ganglion cells in profound sensorineural hearing loss: implications for cochlear implantation. Annals of Otology, Rhinology, & Laryngology, 98, 411-416.
  93. Nikolopoulos, T.P., O’Donoghue, G.M., & Archbold, S. (1999). Age at implantation: its importance in pediatric cochlear implantation. The Laryngoscope, 109, 595-599.
  94. Pantev, C., Engelien, A., Candia, V., & Elbert, T. (2001a). Representational cortex in musicians. Plastic alterations in response to musical practice. Annals of the New York Academy of Sciences, 930, 300-314.
  95. Pantev, C., Roberts, L.E., Schulz, M., Engelien, A., & Ross, B. (2001b). Timbre-specific enhancement of auditory cortical representations in musicians. Neuroreport, 12, 169-174. 
  96. Pantev, C., Wollbrink, A., Roberts, L.E., Engelien, A., & Lütkenhöner, B. (1999). Short-term plasticity of the human auditory cortex. Brain Research, 842, 192-199.
  97. Pascual-Leone, A., & Torres, F. (1993). Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain, 116, 39-52.
  98. Philibert, B. (2001). Plasticité cérébrale fonctionnelle et latéralisation auditive chez le malentendant presbyacousique durant sa réhabilitation audioprothétique. Thèse de Doctorat, Université Claude Bernard – Lyon 1.
  99. Poon, P. W., & Chen, X. (1992). Postnatal exposure to tones alters the tuning characteristics of inferior coliicular neurons in the rat. Brain Research, 585, 391-394.
  100. Popelar, J., Erre, J.P., Aran, J.M., & Cazals, Y (1994). Plastic changes in ipsi-contralateral differences of auditory cortex and inferior colliculus evoked potentials after injury to one ear in the adult guinea pig. Hearing Research, 72, 125-134.
  101. Qiu, C., Salvi, R.J., Ding, D., & Burkard, R. (2000). Inner hair cell loss leads to enhanced response amplitudes in auditory cortex of unanesthetized chinchillas: evidence for increased system gain. Hearing Research, 139, 153-171.
  102. Rajan, R. (1998). Receptor organ damage causes loss of cortical surround inhibition without topographic map plasticity. Nature Neuroscience, 1, 138-143.
  103. Rajan, R., & Irvine, D.R.F. (1996). Features of and boundary conditions for lesion-induced reorganization of adult auditory cortical maps. In R.J. Salvi, D. Henderson, F. Fiorino, & V. Colletti (Eds), Auditory system plasticity and regeneration (pp. 224-237). New-York: Thieme Medical Publishers.
  104. Rajan, R., & Irvine, D.R.F. (1998a). Absence of plasticity of the frequency map in dorsal cochlear nucleus of adult cats after unilateral partial cochlear lesions. The Journal of Comparative Neurology, 399, 35-46.
  105. Rajan, R., & Irvine, D.R.F. (1998b). Neuronal responses across cortical field A1 in plasticity induced by peripheral auditory organ damage. Audiology & Neurootology, 3, 123-144.
  106. Rajan, R., & Irvine, D.R.F., Wise, L.Z., & Heil, P. (1993). Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. The Journal of Comparative Neurology, 338, 17-49.
  107. Ramachandran, V.S. (1993). Behavioral and magnetoencephalographic correlates of massive cortical reorganization. [Review]. Proceedings of the National Academy of Sciences (USA), 258, 1159-1160.
  108. Ramachandran, V.S., Rogers-Ramachandran, D., & Stewart, M. (1992). Perceptual correlates of massive cortical reorganization. Science, 258, 1159-1160.
  109. Rauschecker, J.P. (1999). Auditory cortical plasticity: a comparison with other sensory systems. Trends in Neuroscience, 22, 74-80.
  110. Rausell, E., Cusick, C.G., Taub, E., & Jones, E.G. (1992). Chronic deafferentation in monkeys differentially affects nociceptive and nonnociceptive pathways distinguished by specific calcium-binding proteins and down-regulates gamma-aminobutyric acid type A receptors at thalamic levels. Proceedings of the National Academy of Sciences (USA), 89, 2571-2575.
  111. Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience, 13, 87-103.
  112. Robertson, D., & Irvine, D.R.F. (1989). Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. The Journal of Comparative Neurology, 282, 456-471.
  113. Rose, J.E., Brugge, J.F., Anderson, D.J., & Hind, J.E. (1968) Patterns of activity in single auditory nerve fibers of the squirrel monkey. In: Reuck AVS, Knight J, editors. Hearing mechanisms in vertebrates. London: Churchill, 144-157.
  114. Rubinstein, J.T., Parkinson, W.S., Tyler, R.S., & Gantz, B.J. (1999). Residual speech recognition and cochlear implant performance: effects of implantation criteria. American Journal of Otology, 20, 445-452.
  115. Salvi, R.J., Wang, J., & Ding, D. (2000). Auditory plasticity and hyperactivity following cochlear damage. Hearing Research, 147, 261-274.
  116. Salvi, R.J., Wang, J., & Powers, N.L. (1996). Rapid functional reorganization in the inferior colliculus and cochlear nucleus after acute cochlear damage. In R.J. Salvi, D. Henderson, F. Fiorino, & V. Colletti (Eds), Auditory system plasticity and regeneration (pp. 275-296). New-York: Thieme medical publishers.
  117. Salvi, R.J., Saunders, S.S., Gratton, M.A., Arehole, S., & Powers, N.L. (1990). Enhanced evoked response amplitudes in the inferior colliculus of the chinchilla following acoustic trauma.  Hearing Research, 50, 245-257.
  118. Sanes, J.N., Suner, S., & Donoghue, J.P. (1990). Dynamic organization of primary motor cortex output to target muscles in adult rats. I. Long-term patterns of reorganization following motor or mixed peripheral nerve lesions. Experimental Brain Research, 79, 479-491.
  119. Scheffler, K., Bilecen, D., Schmid, N., Tschopp, K., & Seelig, J. (1998). Auditory cortical responses in hearing subjects and unilateral deaf patients as detected by functional magnetic resonance imaging. Cerebral cortex, 8, 156-163.
  120. Schwaber, M.K., Garraghty, P.E., Kaas, J.H. (1993). Neuroplasticity of the adult primate auditory cortex following cochlear hearing loss. American Journal of Otology, 14, 252-258.
  121. Shirane, M., & Harrison, R.V. (1991). The effects of long and short term profound deafness on the responses of inferior colliculus to electrical stimulation of the cochlea. Acta Otolaryngologica (Stockholm), 489 (suppl), 32-40.
  122. Shofner, W.P., & Young, E.D. (1985). Excitatory/inhibitory reponse types in the cochlear nucleus: relationships to discharge patterns and responses to electrical stimulation of the auditory nerve. Journal of Neurophysiology, 54, 917-939.
  123. Sie, K.C., & Rubel, E.W.. (1992). Rapid changes in protein synthesis and cell size in the cochlear nucleus following eighth nerve activity blockade or cochlea ablation. The Journal of Comparative Neurology, 320, 501-508.
  124. Silito, A.M. (1975). The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. The Journal of Physiology, 250, 305-329.
  125. Silman, S., Gelfand, S.A., & Silverman, C. (1984). Late-onset auditory deprivation: effects of monaural versus binaural HAs. Journal of the Acoustical Society of America, 76, 1357-1362.
  126. Silman, S., Silverman, C., Emmer, M.B., & Gelfand, S.A. (1992). Adult-onset auditory deprivation. Journal of the American Academy of Audiology, 3, 390-396.
  127. Smith, L., & Simmons, F.B. (1983). Estimating eighth nerve survival by electrical stimulation. Annals of Otology, Rhinology & Laryngology, 92, 19-23.
  128. Sterr, A., Müller, M.M., Elbert, T., Rockstroh, B., Pantev, C., & Taub, E. (1998a). Changed perceptions in Braille readers. Nature, 391, 134-5.
  129. Sterr, A., Müller, M.M., Elbert, T., Rockstroh, B., Pantev, C., & Taub, E. (1998b). Perceptual correlates of changes in cortical representation of fingers in blind multifinger Braille readers. Journal of Neuroscience, 18, 4417-4123.
  130. Summerfield, A.Q., & Marshall, D.H. (1995). Preoperative factors of outcomes from cochlear implantation in adults: performance and quality of life. Annals of Otology, Rhinology, & Laryngology, Suppl 166, 105-108.
  131. Talvar, S.K., & Gerstein, G.L. (2001). Reorganization in awake rat auditory cortex by local microstimulation and its effects on frequency-discrimination behavior. Journal of Neurophysiology, 86, 1555-1572.
  132. Turner, C.W., & Nelson, D.A. (1982). Frequency discrimination in regions of normal and impaired sensitivity. Journal of Speech and Hearing Research, 25, 34-41.
  133. Tyler, R.S., & Summerfield, A.Q. (1996). Cochlear implantation: relationships with research on auditory deprivation and acclimatization. Ear & Hearing, 17, 38S-50S.
  134. Tyler, R.S., Lowder, M.W., Parkinson, A.J., Woodworth, G.G., & Gantz, B.J. (1995). Performance of adult Ineraid and Nucleus cochlear implant patients after 3,5 years of use. Audiology, 34, 135-144.
  135. Tyler, R.S., Parkinson, A.J., Woodworth, G.G., Lowder, M.W., & Gantz, B.J. (1997a). Performance over time of adult patients using the Ineraid or Nucleus cochlear implant. Journal of the Acoustical Society of America, 102, 508-522.
  136. Tyler, R.S., Teagle H.F.B.,. Kelsay, D.M.R., Gantz, B.J., Woodworth, G.G., & Parkinson, A.J. (1997b). Speech perception by prelingually deaf children after six years of cochlear implant use: effects of age at implantation. Annals of Otology, Rhinology, & Laryngology, Suppl 185, 82-84.
  137. van Dijk, J.E., van Olphen, A.F., Langereis, M.C., Mens, L.H., Brokx, J.P., & Smoorenburg, G.F. (1999). Predictors of cochlear implant performance. Audiology, 38, 109-116.
  138. Wable, J., & Collet L. (1994). Can synchronized otoacoustic emissions really be attributed to SOAEs? Hearing Research, 80, 141-145.
  139. Waltzman, S.B., Cohen, N.L., Gomolin, R.H., Shapiro, W.H., Ozdamar, S.R., & Hoffman, R.A. (1994). Long-term results of early cochlear implantation in congenitally and prelingually deafened children. American Journal of Otology, 15 Suppl 2, 9-13.
  140. Wang, J., Caspary, D., & Salvi, R.J. (2000). GABA-A antagonist causes dramatic expansion of tuning in primary auditory cortex. Neuroreport, 11, 1137-1140.
  141. Wang, J., Powers, N.L., Hofstetter, P., Trautwein, P., Ding, D., & Salvi, R. (1997). Effects of selective inner hair cell loss on auditory nerve fiber threshold, tuning and spontaneous and driven discharge rate. Hearing Research, 107, 67-82.
  142. Wang, J., Salvi, R.J. , & Powers, N.L. (1996). Plasticity of response properties of inferior colliculus neurons following acute cochlear damage. Journal of Neurophysiology, 75, 171-183.
  143. Warren, R., Tremblay, N, & Dykes, R.W. (1989). Quantitative study of glutamic acid decarboxylase-immunoreactive neurons and cytochrome oxidase activity in normal and partially deafferented rat hindlimb somatosensory cortex. The Journal of Comparative Neurology, 288, 583-592.
  144. Webster, D.B., & Webster, M. (1979). Effects of neonatal conductive hearing loss on brain stem auditory nuclei. Annals of Otology, Rhinology & Laryngology, 88, 684-688.
  145. Weinberger, N.M., & Bakin, J.S. (1998). Learning-induced physiological memory in adult primary auditory cortex: receptive fields plasticity, model, and mechanisms. Audiology & Neurootology, 3, 145-167.
  146. Willot, J.F. (1996). Physiological plasticity in the auditory system and its possible relevance to hearing aid use, deprivation effects, and acclimatization. Ear & Hearing, 17, 66S-67S.
  147. Willott, J.F., Aitkin, L.M., & McFadden, S.L. (1993). Plasticity of auditory cortex associated with sensorineural hearing loss in adult C57BL/6J mice. The Journal of Comparative Neurology, 329, 402-411.
  148. Willott, J.F., Pankow, D., Hunter, K.P., & Kordyban, M. (1985). Projections from the anterior ventral cochlear nucleus to the central nucleus of the inferior colliculus in young and aging C57BL/6 mice. The Journal of Comparative Neurology, 237, 545-551.
  149. Willott, J.F., & Turner, J.G. (2000). Neural plasticity in the mouse inferior colliculus: relationship to hearing loss, augmented acoustic stimulation, and prepulse inhibition. Hearing Research, 147, 275-281.
  150. Yang, L., Pollack, G.D., & Resler, C. (1992). GABAergic circuits sharpen tuning curves and modify response properties in the mustache bat inferior colliculus. Journal of Neurophysiology, 68, 1760-1774.
  151. Young, E.D., & Voigt, H.F. (1982). Response properties of type II and type III units in dorsal cochlear nucleus. Hearing Research, 6, 153-169.
  152. Zwicker, E. (1970). Masking and psychological excitation as consequences of the ear’s frequency analysis. In: Plomp R, Smoorenburg GF, editors. Frequency analysis and periodicity detection in hearing. Leiden: Sijthoff, pp 376-394.