Bibliographie

  1. Agrebi, S. & Le Maréchal, J.-F. (2003). Décrire l’évolution de l’aptitude à lexicaliser un système symbolique : cas des mécanismes en chimie organique. Communication aux Journées de l’Ardist. Toulouse.
  2. Anderson, B. (1990). Pupil’s conceptions of matter and its transformation (age 12-16). Studies in science education. 18, 53-85.
  3. Arizona state university (2001). Student Preconceptions and Misconceptions in Chemistry Integrated Physics and Chemistry Modeling Workshop.
  4. Astolfi, J.P. & Drouin, A.-M. (1992). La modélisation à l’école élémentaire. In J.-L. Martinand. Enseignement et apprentissage de la modélisation en sciences. Didactique des disciplines. Equipe INRP/LIREST.
  5. Bachelard, S. (1979). Quelques aspects historiques des notions de modèle et de justification des modèles. In P. Delattre et M. Thellier (Eds.). Actes du colloque. Elaboration et justification des modèles. Vol. 1, pp. 3-18. Paris : Maloine.
  6. Baker, M.J. (2000). Les attitudes et leurs révisions dans le dialogue : le cas de la résolution coopérative de problèmes. Psychologie de l’interaction. Vol.12, n° 11, 229-265.
  7. Barral, F.L., Fernandez, E.G.R. & Otero, J.R.G. (1992). Secondary Students’ Interpretations of the Process occurring in an Electrochemical Cell. Journal of Chemical Education. Vol. 69, (8) , 655-657.
  8. Bessot, A. & Grenier, D. (1995). Cours de DEA de didactique des disciplines scientifiques. Université Grenoble I et Université Lyon I
  9. Bodner, G.M. (1986). Constructivism: A theory of knowledge. Journal of Chemical Education. Vol. 63, 221-252.
  10. Bottin, J. & Mallet, J.C. (1988). Cours de chimie 1 re année. Dunod Université, Paris.
  11. Bottin, J., Mallet, J.C . & Fournié, R. (1989). C ours de chimie 2 e année. Dunod université, Paris.
  12. Boulabiar, A., Bouraoui, K., Chastrette, M. & Abderrabba, M. (2004). A historical analysis of the Daniell cell and electrochemistry teaching in French and Tunisian textbooks. Journal of chemical education. Vol. 81, 5, pp.754-757.
  13. Bouraoui, K. (1998). Analyse des conceptions et étude du changement conceptuel chez des élèves tunisiens et français: conduction électrique dans les piles électrochimiques. Thèse de Doctorat, Université Claude Bernard-Lyon1, Lyon, N° 170-98.
  14. Bouraoui, K. & Chastrette, M. (1999). Conceptions d’élèves et d’étudiants français et tunisiens sur la conduction dans les piles électrochimiques. Didaskalia. 14, 39-60.
  15. Bresson, F. (1987). Les fonctions de représentation et de communication, Psychologie. Eds. Piaget, Mounoud, Bronkart. Encyclopédie de la Pleiade, pp.933-982.
  16. Brousseau, G. (1998). Théorie des situations didactiques. Textes rassemblés et préparés par Nicolas Balacheff, Martin Cooper, Rosamund Sutherland, Virginia Warfield. Eds. La pensée sauvage.
  17. Brousseau, G. (1983). Obstacles épistémologiques en mathématique. Recherches en didactique des mathématiques. vol 4 n° 2 pp. 167-198, Eds. La pensée sauvage.
  18. Brousseau, G., (1986). Fondements et méthodes de la didactique des mathématiques. Recherches en didactique des mathématiques, vol 7 n°2 pp. 33-115, Eds. La pensée sauvage.
  19. Buty, C. (2000). Etude d’un apprentissage dans une séquence d’enseignement en optique géométrique à l’aide d’une modélisation en informatique. Thèse de Doctorat, Université Lumière-Lyon2, Lyon.
  20. Chevallard, Y. (1986). Esquisse d’une théorie formelle de didactique. In : Laborde C. (Ed.). Actes du premier colloque franco-allemand de didactique des mathématiques et de l’informatique. pp.97-106. Grenoble : La pensée sauvage.
  21. Chi, M.T.H. (1991). Conceptual change within and across ontological categories : examples from learning and discovery in science. In R. Giere (Eds.), Cognitive models or science: Minnesota studies in the philosophy of science. Minneapolis, MN: university of Minnesota Press, pp. 129-186.
  22. Cobern, W.W. & Aikenhead, G. S. (1998). Cultural aspects of learning science. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education. Dordrecht: Kluwer.
  23. Coll, R.K. & Treagust, D. F. (2003). Investigation of secondary school, undergraduate, and graduate learners’ mental models of ionic bonding. Journal of research in science teaching. Vol. 40, n° 5, pp. 464-486.
  24. Coppée, S. (1993 ). Processus de vérification en mathématiques chez les élèves de première scientifique en situation de devoir surveillé. Thèse de Doctorat, Université Claude Bernard-Lyon1, Lyon, 1993.
  25. Didier, R. & Grecias, P. (1996). Chimie Sup. PCSI cours et exercices d’application. Technique & Documentation, Paris.
  26. diSessa, A.A. (1994). What do “just plain folks” Know about physics? In Olson, D. R. & Torrance, N. (Eds.), The handbook of education and human development: New models of learning, teaching, and schooling. Oxford: England: Blackwell.709-730.
  27. diSessa, A.A. (1988). Knowledge in pieces. In Forman, G. & Pufall, P. (Eds.), Constructivism in the computer age. Hillsdale, NJ: Erlbaum. 49-70.
  28. Dori, Y.J. & Hameiri, M. (2003). Multidimentional analysis system for quantitative chemistry problems : symbol, macro, micro, and process aspects. Journal of research in science teaching. Vol. 40, (3), 278-302.
  29. Driver, R. (1981). Pupils alternative frameworks in science. European Journal of science Education. Vol. 3, (1), 93-101.
  30. Driver, R. (1989). Students’ conceptions and the learning of science. International journal of science education. Vol.11, (5), 481-490.
  31. Driver, R. & Easley, J.A. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education. 5, 61-84
  32. Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education, 75, 649-672.
  33. Duit, R. & Glynn, S. (1996). Mental modelling. In G. Welford, J. Osborne, & P. Scott (Eds.), Research in science education in Europe: current issues and themes (pp. 166-176). London: Flamer.
  34. Duval, R. (1993). Registre de représentation sémiotique et fonctionnement cognitif de la pensée. IREM de Strasbourg. n° 5 p. 37-65.
  35. Duval, R. (1995). Sémiosis et pensée humaine, registres sémiotiques et apprentissages intellectuels. Peter Lang
  36. Ehrlich, S. & Flament, C. (1970). Précis de statistique. Presses Universitaires de France
  37. Erduran, S. (2001). Philosophy of chemistry: An emerging field with implications for chemistry education. Science & education, 10(6), 581-593.
  38. Feynman, R.P. (1994). Six easy pieces. Reading, MA: Helix Books
  39. Francoeur, E. (1997). The forgotten tool: The design and use of molecular models. Social Studies of science, 27, 7-40.
  40. Francoeur, E. (2000). Beyond dematerialization and inscription: Does the materiality of molecular models really matter? HYLE – An international journal of the philosophy of chemistry, 6(1), 52-69.
  41. Gabel, D.L. & Bunce, D.M. (1994). Research on problem solving: Chemistry. In Gabel, D.L (Eds.) Handbook of Research on Science Teaching and Learning. NY: MacMillan.
  42. Gabel, D.L. (1999). Improving Teaching and Learning through Chemistry Education Research : A look to the Future. Journal of Chemical Education, Vol. 76, n°4, pp.548-554.
  43. Garnett, P.J. & Treagust, D.F. (1992). Conceptual Difficulties Experienced by Senior High School Students of Electrochemistry: Electrochemical (Galvanic) and electrolytic Cells. Journal of Research in Science Teaching. Vol.29 (10), 1079-1099.
  44. Gentner, D. (1983). Structure mapping; a theoretical framework for analogy. Cognitive Science. 7, 155-170.
  45. Gilbert, J. (1997). Models in science and science education. In J. Gilbert (Eds.), Exploring models and modelling in science and technology education: contributions from the MISTRE group (pp. 5-19). Reading: Faculty of education and community studies, the University of reading.
  46. Gilbert, J.K. (Eds.) (1993). Models and modelling in science education. Hatfield, UK: Association for Science Education.
  47. Gilbert, J.K. & Boulter, C. J. (1998). Learning science through models and modelling. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 53-66). Dordrecht, The Netherlands: Kluwer Academic Publishers.
  48. Gilbert, J., Boulter, C. & Rutherford, M. (1998). Models in explanations, Part 1: horses for courses? International journal of science education. Vol. 20(1), 83-97.
  49. Gilbert, J.K., Boulter, C.J. & Rutherford, M. (2000). Explanations with models in science education. In Gilbert, J.K. & Boulter, C.J. (Eds.), Developing models in science education (pp. 193-208). Dordrecht, the Netherlands: Klewer.
  50. Gillespie, R.J. (1972). Molecular geometrie. Van Nostrand Reinhold company (Eds.).
  51. Giordan, A. (1991). The importance of modelling in the teaching and popularisation of science. Impact of science on society. 164, 321-338.
  52. Glynn, S.M. (1991). Explaining science concepts: A teaching-with-analogies model. In S. Glynn, R. Yeany, & B. Britton (Eds.), The psychology of learning science (pp. 219-240). Hillsdale, NJ: Erlbaum.
  53. Granger, G. (1979). Language et épistémologie, Paris, Klinksieck.
  54. Gray, H.B. & Haight, G.P. (1982). Principes de chimie. Inter Édition, Paris.
  55. Grosslight, L., Unger, C., Jay, E. & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of research in science teaching. Vol. 28(9), 799-822.
  56. Hardwicke, A.J. (1995). Using molecular models to teach chemistry part 1 modelling molecules. School science review. Vol. 77(278), 59-64.
  57. Harisson, A.G. & Treagust, D.F. (2001). Conceptual change using multiple interpretive perspectives: two cases in secondary school chemistry. Instructional sciences. Vol. 29, 45-85.
  58. Harisson, A.G. (2001). How do teachers and textbooks writers model scientific ideas for students ? Research in science education. 31, 401-435.
  59. Harisson, A.G. & Treagust, D.F. (1996). Secondary students’ mental models of atoms and molecules: Implication for teaching chemistry. Science education. Vol. 80(5), 509-534.
  60. Harisson, A.G. & Treagust, D.F. (1998). Modelling in science lessons: are there better ways to learn with models? School Science and Mathematics. Vol. 98(8), 420-429.
  61. Harisson, A.G. & Treagust, D.F. (2000a). Learning about atoms, molecules, and chemical bonds: A case study of multiple-model use in grade 11 chemistry. Science education. Vol. 84(3), 352-381.
  62. Harisson, A.G. & Treagust, D.F. (2000b). A typology of school science models. International journal of science education. Vol. 22(9), 1011-1026.
  63. Harissons, A.G. (2000). How do teachers and textbook writers model scientific ideas for students ? Paper presented at the annual Meeting of the national association for research in science teaching, New Orleans, 29 Avril- 1 Mai.
  64. Hewitt, P.G. (1992). Conceptual physics. Menlo Park, CA: Addison-Wesley Publishing Company, Inc.
  65. Ingham, A.M. & Gilbert, J.K. (1991). The use of analogue models by students of chemistry at higher education level. International journal of science education. Vol. 13(2), 193-202.
  66. Johnstone, A.H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of chemical education. Vol. 70(9), 701-705.
  67. Johsua, S & Dupin, J.J. (1993 ). Introduction à la didactique des sciences et des mathématiques. Presse Universitaire de France.
  68. Justi, R. & Gilbert, J. (2000). History and philosophy of science through models: some challenges in the case of “the atom”. International Journal of science education. Vol.22(9), 993-10009.
  69. Khun, T.S. (1996). The structure of scientific revolutions, 3rd. Chicago and London: the University of Chicago Press.
  70. Kinnear, J. & Martin, M. (1992). Nature of biology: book one. Milton, Queensland: The Jacaranda Press.
  71. Kline, M. (1985). Mathematics and the search for knowledge. New York: Oxford University Press.
  72. Koama, R.B. & Russel, J. (1997). Multimedia and understanding: expert and novice response to different representations of chemical phenomena. Journal of research in science teaching. Vol.34(9), 949-968.
  73. Larkin, J. (1983). The role of problem representation in physics. In D. Genter & A. L. Stevens (Eds.). Mental models (PP. 75-98). Hillsdale N. J. : Laurence Erlbaum Assoc.
  74. Laugier, A. & Dumon, A. (2000). Practical works and representation of chemical reaction in the macroscopic and microscopic level ; Chemistry Education : Research and practice in Europe. Vol 1, (1), pp. 61-75
  75. Le Maréchal, J.-F. (1999). Modelling student’s cognitive activity during the resolution of problems based on experimental facts in chemical education. In J. Leach & A.C. Paulsen (Eds.) Practical Work in Science Education, pp. 195-209.
  76. Luisi, P.L. & Thomas, R.M. (1990). The pictographic molecular paradigm – Pictorial communication in the chemical and biological sciences. Naturwissenschaften, 77, 67-74
  77. Mainzer, K. (1999). Computational models and virtual reality. New perspectives of research in chemistry. HYLE - An international journal of the philosophy of chemistry. Vol.5(2), 117-126.
  78. Mallet, J.C. & Fournié, R. (1997). Chimie cours 2 e année. 2. Chimie des matériaux inorganiques. Dunod, Paris.
  79. Minstrell, J. (1991). Facets of students’ knowledge and relevant instruction. Research in physics learning: theoretical issues and empirical studies. Proceedings of an international workshop held at the university of Bremen, march 4-8, 1991. Reinders Duit, Fred Goldberg, Hans Niedderer (Eds.).
  80. Minstrell, J.A. (1989).Teaching science for understanding. In Resnick, L. & Klopfer, L. (Eds.), Toward the thinking curriculum: current cognitive research. Alexandria, VA: association for supervision and curriculum development.129-149.
  81. Mortimer, E.F. & Manchado, A.H. (2000). Anomalies and conflicts in classroom discourse. Science education. 84, 429-444.
  82. Nakhleh, M.B. & Mitchell, R.C. (1993). Concept learning versus problem solving: there is a difference. Journal of chemical education. Vol. 70, pp. 190-192.
  83. Nakhleh, M.B. (1992). Why some students don’t learn chemistry. Journal of Chemical Education. Vol.69, (3), 191-196.
  84. Nelson, K. (1977). Cognitive development and the acquisition of concepts. In R. C. Anderson, R. J. Spiro, and W.E. Montague (Eds.), Schooling and the acquisition of Knowledge. Hillsdale, NJ: Lawrence Erlbaum Associates.
  85. Novak, J.D. (1977). A theory of education. Ithaca: Cornell University Press.
  86. Ogude, A.N. & Bradley. J.D. (1994). Ionic conduction and electrical neutrality in operating electrochemical cells. Journal of Chemical Education. Vol. 71, (1), 29-34.
  87. Pekdag, B. & Le Maréchal, J.-F. (2001). Apprentissage comparé de la notion de réaction chimique en TP ou à l’aide d’une vidéo : rôle des observations faites par les élèves. Skhôle, Cahier de la Recherche et du Développement, numéro hors série, IUFM académie d'Aix-Marseille, pp.129-141.
  88. Perry, W.G. (1970). Forms of intellectual and ethical development in the college years. New York: Holt, Rinehart and Winston.
  89. Pimentel, G.C. (Ed.). (1963). Chemistry : an experimental science. San Francisco: W. H. Freeman & Co.
  90. Rapport : Etude de la mise en œuvre et de l’élaboration des notions fondatrices dans les situations d’enseignement : le cas de l’enseignement des sciences et des mathématiques.(1999). CNCRE-UMR-GRIC-COAST, CNRS & Université Lumière Lyon-2
  91. Resnick, L. (1982). A new conception of mathematics and science learning, learning research and development center, University of Pittsburgh.
  92. Resnick, L.B. (1981). Instructional psychology. Annual Review of Psychology. Vol. 32, 659-704.
  93. Rollnick, M., Zwane, S., Staskun, M., Lotz, S. & Green, G. (2001). Improving pre-laboratory preparation of first year university chemistry students. International Journal of science education. Vol. 23, 10, 1053-1071.
  94. Rosenberg, J.L & Epstein, L.M. (1993). Chimie générale. Mc Graw Hill Inc, Paris.
  95. Rowell, J.A., Dawson, C.J. & Lyndon, H. (1990). Changing misconceptions: a challenge to science educators. International Journal of Science Education. Vol.12, (2), 167-175.
  96. Runo, J.R. & Peters, D.G. (1993). Climbing a potential ladder to understanding concepts in electrochemistry. Journal of Chemical Education. Vol.70, (9), 708-713.
  97. Sanger, M.J. & Greenbowe, T.J. (1997). Students’ misconceptions in electrochemistry: Current flow in electrolyte solutions and the salt bridge. Journal of Chemical Education. Vol.74, (7) , 819-823.
  98. Sarrazin, J. & Verdaguer, M. (1991). L’oxydoréduction, concepts et expériences. Ellipse, Paris.
  99. Schmidt, H.J. (1995). Applying the concept of conjugation to the Bronsted theory of acid-base reactions by senior high school students from Germany. International journal of Science Education. Vol. 17. n°6,pp.733-741.
  100. Scott, P.H., Asoko, H.M., & Driver, R.H. (1991). Teaching for conceptual change: A review of strategies. In R. Duit, F. Goldberg, & H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical studies. Kiel:IPN
  101. Stavridou, H. & Solomonidou, C. (2000). Représentation et conceptions des élèves grecs par rapport au concept d’équilibre chimique. Didaskalia. n°1,pp.107-134
  102. Stavridou, H. & Solomonodou , C. (1989). Physical phenomena-chemical phenomena : do pupils make the distinction ?International journal of science education. Vol. 11, (1), 83-92.
  103. Stavy, R. & Berkovitz, B. (1980). Cognitive conflict as a basis for teaching quantitative aspect of the concept of temperature. Science education, 64, 679-692.
  104. Sutton, C. (1992). Figuring out a scientific understanding. Journal of research in Science Teaching. Vol. 30, 1215-1228.
  105. Sutton, C.(1991). Words, science and learning. Buckingham, UK: Open University Press
  106. Taber, K.S. & Watts, M. (1997). Constructivism and concept learning in chemistry: Perspectives from a case study. Research in education. 58, 10-20.
  107. Taber, K.S. (1997). Student understanding of ionic bonding: Molecular versus electrostatic framework. School science review.78, 85-95.
  108. Taber, K.S. (2000). Multiple frameworks? Evidence of manifold conceptions in individual cognitive structure. International journal of science education. Vol. 22, 399-417.
  109. Taber, K.S. (2001a). Building the structural concepts of chemistry: some considerations from educational research. Chemical education: research and practice in Europe. Vol. 2, 123-158.
  110. Taber, K.S. (2001b). Shifting sands: A case study of conceptual development as competition between alternative conceptions. International journal of science education. Vol. 23, 741-753.
  111. Teichert, M.A. & Stacy, A.M. (2002). Promoting understanding of chemical bonding and spontaneity through Student explanation and integration of ideas. Journal of Research in Science Teaching. Vol.39, (6), 464-496.
  112. Tiberghien, A. (1994). Modeling as a basis for analyzing teaching-learning situations. Learning and Instruction. Vol. 4. n°1,pp.71-87.
  113. Tiberghien. A. (1995). Les conceptions. Cours DEA de didactique des disciplines scientifiques, Université de Lyon 1.
  114. Treagust, D.F., Chittleborough, G.D. & Mamiala, T.L. (2004). Students’ understanding of the descriptive and predictive nature of teaching models in organic chemistry. Research in science education, 34, 1-20.
  115. Tsoumpelis, L. & Gréa, J. (1995). Essai d’application de la théorie des situations en sciences physiques. Apprentissage de la concentration molaire en classe de première S (Grade 11 U. S.). Recherches en didactique des mathématiques. Vol. 15 n° 2 pp. 63-108
  116. Van Driel, J.H. (1998). Teachers’ knowledge about the nature of models and modelling in science, Paper presented at the annual meeting of the national association for research in science education, San Diego, 19-22.
  117. Van Driel, J.H. & Verloop, N. (1999). Teachers’ knowledge of models and modelling science. International journal of science education. Vol.21(11), 1141- 1154.
  118. Van Driel, J.H., De Vos, W., Verloop, N. & Dekkers, H. (1998). Developing secondary students’ conceptions of chemical reactions: the introduction of chemical equilibrium. International journal of science education. Vol.20, (4), 379-392.
  119. Vergnaud, G. (1981). Quelques orientations théoriques et méthodologique des recherches françaises en didactiques des mathématiques. Recherches en didactique des mathématiques. Vol. 2 n° 2 pp. 215-232, ed. La pensée sauvage, Grenoble.
  120. Vergnioux, A. (1991). Pédagogie et théorie de la connaissance, Platon contre Piaget ? Peter Lang (Eds.), Berne.
  121. Vergnioux, A. (1993). Sciences cognitives et didactiques. Pluridisciplinarité dans les sciences cognitives. Textes réunis par O. Boussaid, M. Brissaud, G. Ritschard, J-P. Royet. Editions Hermes. Paris.
  122. Vermersch, P. (1991). L’entretien d’explicitation. Les cahiers de Beaumont. Vol. 52 bis-53, pp. 63-70.
  123. Vosniadou, S. (1994). Capturing and modelling the process of conceptual change. Learning and Instruction. 4, 45-69.
  124. Vosniadou, S. & Brewer, W.F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive psychology. Vol.24, 535-585