Bibliographie

  1. Adams J.C. (1979) Ascending projections to the inferior colliculus. J. Comp. Neurol. 183(3):519-38.
  2. Aitkin, L.M., Anderson, D.J., Brugge, J.F. (1970). Tonotopic organization and discharge characteristics of single neurons in nuclei of the lateral lemniscus of the cat. J. Neurophysiol. 33:421-440.
  3. Aitkin L.M., Webster W.R., Veale J.L., Crosby D.C. (1975) Inferior colliculus. I. Comparison of response properties of neurons in central, pericentral, and external nuclei of adult cat. J. Neurophysiol. 38(5):1196-1207.
  4. Aitkin, L.M., and Schuck, D. (1985) Low frequency neurons in the lateral central nucleus of the cat inferior colliculus receive their input predominantly from the medial superior olive. Hear. Res. 17:87-93.
  5. Allard T., Clark S.A., Jenkins W.M., Merzenich M.M. (1991) Reorganization of somatosensory area 3b representations in adult owl monkeys after digital syndactyly. J. Neurophysiol. 66:1048-1058.
  6. Arlinger S., Elberling C., Bak C., Kofoed B., Lebech J., Saermark K. (1982) Cortical magnetic fields evoked by frequency glides of a continuous tone. Electroencephalogr. Clin. Neurophysiol. 54(6):642-53.
  7. Bajo V.M., Merchan M.A., Malmierca M.S., Nodal F.R., Bjaalie J.G. (1999) Topographic organization of the dorsal nucleus of the lateral lemniscus in the cat. J. Comp. Neurol. 407(3):349-66.
  8. Bakin J.S., Weinberger N.M. (1990) Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Res. 536(1-2):271-86.
  9. Bandettini P.A., Jesmanowicz A., Van Kylen J., Birn R.M., Hyde J.S. (1998) Functional MRI of brain activation induced by scanner acoustic noise. Magn. Reson. Med. 39(3):410-6.
  10. Barbay S., Peden E.K., Falchook G., Nudo R.J. (1999) Sensitivity of neurons in somatosensory cortex (S1) to cutaneous stimulation of the hindlimb immediately following a sciatic nerve crush. Somatosens. Mot. Res. 16(2):103-14.
  11. Behrens S., Blumstein S.E. (1988) Acoustic characteristics of English voiceless fricatives: A description analysis. J. Phonetics 16:295-298.
  12. Bekesy G. von and Rosenblith W. A. (1948). ”The early history of hearing - observations and theories,” J. Acoust. Soc. Am. 20, 727-748.
  13. Bekesy G. von (1949). The structure of the middle ear and the hearing of one’s own voice by bone conduction. Journal of the Acoustical Society of America, 21, 217 –232.
  14. Bekesy G. von (1960). Experiments in Hearing. McGraw Hill Book Co., New York.
  15. Bertrand O., Perrin F., Echallier J.-F., Pernier, J. (1988). Topography and model analysis of auditory evoked potentials: tonotopic aspects. In: Pfurtscheller, G. et Lopes da Silva, F., éditeurs, Functional Brain Imaging. Toronto:Hans Huber, pp. 75-82.
  16. Belin P., McAdams S., Smith B., Savel S., Thivard L., Samson S., Samson Y. (1998) The functional anatomy of sound intensity discrimination. J. Neurosci. 18(16):6388-94.
  17. Bertrand O., Thévenet M., Perrin F. (1991). 3D finite elements method in brain electrical activity studies. In: J. Nenonen, H. R. et Katila, T., éditeurs, Biomagnetic Localisation and 3D modeling. Espoo, Finland:Helsinki university of technology, pp. 154-171.
  18. Bilak M., Kim J., Potashner S.J., Bohne B.A., Morest D.K. (1997) New growth of axons in the cochlear nucleus of adult chinchillas after acoustic trauma. Exp. Neurol. 147(2):256-68.
  19. Bilecen D., Scheffler K., Schmid N., Tschopp K., Seelig J. (1998) Tonotopic organization of the human auditory cortex as detected by BOLD- FMRI. Hear. Res. 126:19-27.
  20. Brodmann K. (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: JA Barth.
  21. Brown M., Webster W.R., Martin R.L. (1997) Intensity and frequency functions of [14C]2- deoxyglucose labelling in the central nucleus of the inferior colliculus in the cat. Hear. Res. 104(1-2):73-89.
  22. Brown M., Irvine D.R.F., Park V.N. (2004) Perceptual Learning on an Auditory Frequency Discrimination Task by Cats: Association with Changes in Primary Auditory Cortex. Cereb. Cortex 14:952-965.
  23. Brückner S., Dörrscheidt G.J., Rübsamen R. (1996) Binaural response characteristics of single units in five different nuclei of the gerbil superior olivary complex. . 17th Midwinter Research Meeting of the Association for Research in Otolaryngology, St. Petersburg Beach, Florida, USA.
  24. Buchwald J., Dickerson L., Harrison J., Hinman C. (1988) Medial geniculate body unit responses to cat cries. In J. Syka, R.B. Masterton (eds): Auditory pathway, structure and function. New York, Plenum Press, pp.319-322.
  25. Buss E., Hall J.W. 3rd, Grose J.H., Hatch D.R. (1998) Perceptual consequences of peripheral hearing loss: do edge effects exist for abrupt cochlear lesions? Hear. Res. 125(1-2):98-108.
  26. Caicedo A., Herbert H. (1993) Topography of descending projections from the inferior colliculus to auditory brainstem nuclei in the rat. J. Comp. Neurol. 328(3):377-92.
  27. Calford M.B., Tweedale R. (1988) Immediate and chronic changes in responses of somatosensory cortex in adult flying-fox after digit amputation. Nature. 332(6163):446-8.
  28. Calford M.B., Rajan R., Irvine D.R. (1993) Rapid changes in the frequency tuning of neurons in cat auditory cortex resulting from pure-tone-induced temporary threshold shift. Neuroscience. 55(4):953-64.
  29. Calford M.B., Wang C., Taglianetti V., Waleszczyk W.J., Burke W., Dreher B., (2000) Plasticity in adult cat visual cortex (area 17) following circumscribed monocular lesions of all retinal layers. J. Physiol. 524:587-602.
  30. Cansino S., Williamson S.J., Karron D. (1994) Tonotopic organization of human auditory association cortex. Brain Res. 663:38-50.
  31. Cansino S., Williamson S.J. (1997) Neuromagnetic fields reveal cortical plasticity when learning an auditory discrimination task. Brain Res. 764(1-2):53-66.
  32. Carlson S., Willott J.F. (1996) The behavioral salience of tones as indicated by prepulse inhibition of the startle response: relationship to hearing loss and central neural plasticity in C57BL/6J mice. Hear. Res. 99(1-2):168-75.
  33. Casseday J.H., Covey E. (1996) A neuroethological theory of the operation of the inferior colliculus. Brain Behav. Evol. 47(6):311-36.
  34. Celesia G.G. (1976) Organization of auditory cortical areas in man. Brain 99:403-414.
  35. Cetas J.S., Price R.O., Velenovsky D.S., Sinex D.G., McMullen N.T. (2001) Frequency organization and cellular lamination in the medial geniculate body of the rabbit. Hear. Res. 155(1-2):113-23.
  36. Chino, Y.M., Kaas, J.H., Smith, E.L., III, Langston, A.L., Cheng, H. (1992) Rapid reorganization of cortical maps in adult cats following restricted dea¡erentation in retina. Vis. Res. 32:789-796.
  37. Chino Y.M., Smith E.L. III, Kaas J.H., Sasaki Y., Cheng H. (1995) Receptive field properties of deafferented visual cortical neurons after topographic map reorganization in adult cats. J. Neurosci. 15:2417-2433.
  38. Chiu T.W., Poon P.W., Chan W.Y., Yew D.T. (2003) Long-term changes of response in the inferior colliculus of senescence accelerated mice after early sound exposure. J. Neurol. Sci. 216(1):143-51.
  39. Chocholle R. (1940) Variation des temps de réaction auditifs en fonction de l’intensité à diverses fréquences. Année Psycho. 41:65-124.
  40. Clark S., Allard T., Jenkins W.M., Merzenich M.M. (1988) Receptive fields in the body surface map in adult cortex defined by temporally correlated inputs. Nature 332:444-445.
  41. Crist R.E., Li W., Gilbert C.D. (2001) Learning to see: experience and attention in primary visual cortex. Nat. Neurosci. 4(5):519-25.
  42. Cusick C.G., Wall J.T., Whiting J.H.J., Wiley R.G. (1990) Temporal progression of cortical reorganization following nerve injury. Brain Res. 537:355-358.
  43. Darian-Smith C., Gilbert C.D. (1994) Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature. 368:737-40.
  44. Darian-Smith C., Gilbert C.D. (1995) Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated. J. Neurosci. 15:1631-1647.
  45. Dehmel S., Kopp-Scheinpflug C., Dorrscheidt G.J., Rubsamen R. (2002) Electrophysiological characterization of the superior paraolivary nucleus in the Mongolian gerbil. Hear. Res. 172(1-2):18-36.
  46. Dellon A.L. (1981) Sensibility and re-education of sensation in the hand. William & Wilkins, Baltimore..
  47. De Rossi G., Paludetti G., Di Nardo W., Calcagni M.L., Di Giuda D., Almadori G., Galli J. (1996) SPET monitoring of perfusion changes in auditory cortex following mono- and multi-frequency stimuli. Nuklearmedizin. 35(4):112-5.
  48. Diamond D.M., Weinberger N.M. (1986) Classical conditioning rapidly induces specific changes in frequency receptive fields of single neurons in secondary and ventral ectosylvian auditory cortical fields. Brain Res. 372:357-360.
  49. Dietrich V., Nieschalk M., Stoll W., Rajan R., Pantev C. (2001) Cortical reorganization in patients with high frequency cochlear hearing loss. Hear. Res. 158(1-2):95-101.
  50. Di Salle F., Formisano E., Linden D.E., Goebel R., Bonavita S., Pepino A., Smaltino F., Tedeschi G. (1999) Exploring brain function with magnetic resonance imaging. Eur. J. Radiol. 30(2):84-94.
  51. Edeline J.M. (1999) Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog. Neurobiol. 57(2):165-224.
  52. Eggermont J.J., Komiya H. (2000) Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood. Hear Res. 142(1-2):89-101.
  53. Ehret G., Merzenich M.M. (1988) Complex sound analysis (frequency resolution, filtering and spectral integration) by single units of the inferior colliculus of the cat. Brain Res. 472(2):139-63.
  54. Elberling C., Bak C., Kofoed B., Lebech J., Saermark K. (1982) Auditory magnetic fields: source location and 'tonotopical organization' in the right hemisphere of the human brain. Scand. Audiol. 11:61-65.
  55. Elbert T., Flor H., Birbaumer N., Knecht S., Hampson S., Larbig W. (1994) Extensive reorganization of the somatosensory cortex in adult humans after nervous system injury. Neuroreport 5:2593-2597.
  56. Engelien A., Yang Y., Engelien W., Zonana J., Stern E., Silbersweig D.A. (2002) Physiological mapping of human auditory cortices with a silent event-related fMRI technique. Neuroimage. 16(4):944-53.
  57. Eysel U.T., Gonzalez-Aguilar F., Mayer U. (1980) A functional sign of reorganization in the visual system of adult cats: lateral geniculate neurons with displaced receptive fields after lesions of the nasal retina. Brain Res. 181(2):285-300.
  58. Eysel U.T., Gonzalez-Aguilar F., Mayer U. (1981) Time-dependent decrease in the extent of visual deafferentation in the lateral geniculate nucleus of adult cats with small retinal lesions. Exp. Brain Res. 41(3-4):256-63.
  59. Fitzpatrick D.C., Batra R., Stanford T.R., Kuwada S. (1997) A neuronal population code for sound localization. Nature. 388(6645):871-4.
  60. Flor H., Elbert T., Knecht S., Wienbruch C., Pantev C., Larbig W. (1995) Phantom limb pain as a perceptual correlate of massive cortical reorganization in upper extremity amputees. Nature 375:482-484.
  61. Florence S.L., Garraghty P.E., Carlson M., Kaas J.H. (1993). Sprouting of peripheral nerve axons in the spinal cord of monkeys. Brain Res. 601:343–348.
  62. Florence S.L., Garraghty P.E., Wall J.T., Kaas J.H. (1994) Sensory afferent projections and area 3b somatotopy following median nerve cut and repair in macaque monkeys. Cereb Cortex. 4(4):391-407.
  63. Florence S.L., Kaas J.H. (1995) Large-scale reorganization at multiple levels of the somatosensory pathway follows therapeutic amputation of the hand in monkeys. J. Neurosci. 15(12):8083-95.
  64. Florence S.L., Jain N., Pospichal M.W., Beck P.D., Sly D.L., Kaas J.H. (1996) Central reorganization of sensory pathways following peripheral nerve regeneration in fetal monkeys. Nature 381(6577):69-71.
  65. Florence S.L., Boydston L.A., Hackett T.A., Lachoff H.T., Strata F., Niblock M.M. (2001) Sensory enrichment after peripheral nerve injury restores cortical, not thalamic, receptive field organization. Eur J Neurosci. 13(9):1755-66.
  66. Florentine M., Buus S., Hellman R.P. (1997). A model of loudness summation applied to high-frequency hearing loss. In :Jestead, W. (Ed.), Modeling sensorineural hearing loss. Erlbaum, Hillsdale, NJ, pp. 187-198.
  67. Fowler F.P. (1936) A method for the early detection of otosclerosis. Arch. Otolaryngol. 24:731-41.
  68. Friauf E. (1992) Tonotopic Order in the Adult and Developing Auditory System of the Rat as Shown by c-fos Immunocytochemistry. Eur. J. Neurosci. 4(9):798-812.
  69. Fryauf-Bertschy H., Tyler R.S., Kelsay D.M., Gantz B.J., Woodworth G.G. (1997) Cochlear implant use by prelingually deafened children: the influences of age at implant and length of device use. J. Speech Lang. Hear. Res. 40(1):183-99.
  70. Fuhr P., Cohen L.G., Dang N., Findley T.W., Haghighi S., Oro J., Hallett M. (1992) Physiological analysis of motor reorganization following lower limb amputation. Electroencephalogr. Clin. Neurophysiol. 85(1):53-60.
  71. Fujioka T., Kakigi R., Gunji A., Takeshima Y. (2002) The auditory evoked magnetic fields to very high frequency tones. Neuroscience 112:367-381.
  72. Gabriel D., Veuillet E., Vesson J.F., Collet L. (soumis) Secondary functional plasticity: influence of rehabilitation on auditory privation plasticity.
  73. Galaburda A., Sanides F. (1980) Cytoarchitectonic organization of the human auditory cortex. J. Comp. Neurol. 190(3):597-610.
  74. Galambos R., Schwartzkopf, A.R. (1959) Microelectric study of superior olivary nuclei. Amer. j. Physiol. 197, 527.
  75. Garraghty P.E., Kaas J.H., (1991). Functional reorganization in adult monkey thalamus after peripheral nerve injury. Neuroreport 2:747-750.
  76. Gatehouse S. (1989) Apparent auditory deprivation effects of late onset: the role of presentation level. J. Acoust. Soc. Am. 86(6):2103-6.
  77. Gelfand S.A., Silman S., Ross L. (1987) Long-term effects of monaural, binaural and no amplification in subjects with bilateral hearing loss. Scand. Audiol. 16(4):201-7.
  78. Geschwind N., Levitsky W. (1968) Human brain: left-right asymmetries in temporal speech region. Science 161:186-187.
  79. Ghose G.M., Yang T., Maunsell J.H. (2002) Physiological correlates of perceptual learning in monkey V1 and V2. J. Neurophysiol. 87(4):1867-88.
  80. Giard M.H,. Perrin F., Echallier J.F., Thevenet M., Froment J.C., Pernier J. (1994) Dissociation of temporal and frontal components in the human auditory N1 wave: a scalp current density and dipole model analysis. Electroencephalogr. Clin. Neurophysiol. 92:238-252.
  81. Gilbert C.D., Wiesel T.N. (1992) Receptive field dynamics in adult primary visual cortex. Nature 356:150-152.
  82. Giraux P., Sirigu A., Schneider F., Dubernard J.M. (2001) Cortical reorganization in motor cortex after graft of both hands. Nat. Neurosci. 4(7):691-2.
  83. Glendenning K.K., Hutson K.A. (1998) Lack of topography in the ventral nucleus of the lateral lemniscus. Microsc. Res. Tech. 41:298-312.
  84. Goldberg J.M., Brown P.B. (1968). Functional organization of the dog superior olivary complex: an anatomical and electrophysiological study. J. Neurophysiol. 31:639–656.
  85. Goodwin P.E., Johnson R.M. (1980) A comparison of RT to tinnitus and nontinnitus frequencies. Ear Hear. 1(3):148-55.
  86. Guinan J.J. JR, Norris B.E., Guinan S.S. (1972) Single auditory units in the superior olivary complex. II. Locations of unit categories and tonotopic organization. Int. J. Neurosci. 4:147-166.
  87. Hackett T.A., Stepniewska I., Kaas J.H. (1998) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J. Comp. Neurol. 394(4):475-95.
  88. Hackett T.A., Preuss T.M., Kaas J.H. (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J. Comp. Neurol. 441(3):197-222.
  89. Hall J.W. (1992) Handbook of auditory evoked responses. Allyn and Bacon, Boston.
  90. Hallin R.G., Wiesenfeld Z., Lindblom U. (1981) Neurophysiological studies on patients with sutured median nerves: faulty sensory localization after nerve regeneration and its physiological correlates. Exp. Neurol. 73(1):90-106.
  91. Hari R., Makela J.P. (1986) Neuromagnetic responses to frequency modulation of a continuous tone. Acta Otolaryngol. Suppl. 432:26-32.
  92. Harrison R.V., Nagasawa A., Smith D.W., Stanton S., Mount R.J. (1991) Reorganization of auditory cortex after neonatal high frequency cochlear hearing loss. Hear. Res. 54(1):11-9.
  93. Harrison R.V., Ibrahim D., Mount R.J. (1998) Plasticity of tonotopic maps in auditory midbrain following partial cochlear damage in the developing chinchilla. Exp. Brain Res. 123(4):449-60.
  94. Hartmann R., Shepherd R.K., Heid S., Klinke R. (1997) Response of the primary auditory cortex to electrical stimulation of the auditory nerve in the congenitally deaf white cat. Hear. Res. 112(1-2):115-33.
  95. Heil P., Rajan R., Irvine D.R. (1994) Topographic representation of tone intensity along the isofrequency axis of cat primary auditory cortex. Hear. Res. 76(1-2):188-202.
  96. Heinen, S.J., Skavenski, A.A. (1991) Recovery of visual responses in foveal V1 neurons following bilateral foveal lesions in adult monkey. Exp. Brain Res. 83:670-674.
  97. Hellman R.P. (1994) Relation between the growth of loudness and high-frequency excitation. J. Acoust. Soc. Am. 96(5 Pt 1):2655-63.
  98. Hendry S.H., Jones E.G. (1986) Reduction in number of immunostained GABAergic neurones in deprived-eye dominance columns of monkey area 17. Nature. 320(6064):750-3.
  99. Herzog H., Lamprecht A., Kuhn A., Roden W., Vosteen K.H., Feinendegen L.E. (1991) Cortical activation in profoundly deaf patients during cochlear implant stimulation demonstrated by H2(15)O PET. J. Comput. Assist. Tomogr. 15(3):369-75.
  100. Hirata Y., Kuriki S., Pantev C. (1999) Musicians with absolute pitch show distinct neural activities in the auditory cortex. Neuroreport. 10(5):999-1002.
  101. Howard M.A. 3rd, Volkov I.O., Abbas P.J., Damasio H., Ollendieck M.C., Granner M.A. (1996) A chronic microelectrode investigation of the tonotopic organization of human auditory cortex. Brain Res. 724(2):260-4.
  102. Huang C.M., Fex J. (1986) Tonotopic organization in the inferior colliculus of the rat demonstrated with the 2-deoxyglucose method. Exp. Brain Res. 61(3):506-12.
  103. Huotilainen M., Tiitinen H., Lavikainen J., Ilmoniemi R.J., Pekkonen E., Sinkkonen J., Laine P., Naatanen R. (1995) Sustained fields of tones and glides reflect tonotopy of the auditory cortex. Neuroreport. 6(6):841-4.
  104. Huffman R.F., Henson O.W. Jr. (1990) The descending auditory pathway and acousticomotor systems: connections with the inferior colliculus. Brain Res. Rev. 15(3):295-323.
  105. Hurley R.M. (1999) Onset of auditory deprivation. J. Am. Acad. Audiol. 10(10):529-34.
  106. Imig T.J., Morel A. (1985) Tonotopic organization in ventral nucleus of medial geniculate body in the cat. J. Neurophysiol. 53:309–340.
  107. Ito J., Sakakibara J., Iwasaki Y., Yonekura Y. (1993) Positron emission tomography of auditory sensation in deaf patients and patients with cochlear implants. Ann. Otol. Rhinol. Laryngol. 102(10):797-801.
  108. Irvine D.R.F. (1986) The Auditory Brainstem : A review of the Structure and function of auditory Brainstem Processing Mechanisms. Berlin, New York: Springer-Verlag.
  109. Irvine D.R.F. (1992): Physiology of the auditory brainstem. In: Popper A, Fay R (eds): The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp 153–231.
  110. Irvine D.R.F., Rajan R. (1995) Plasticity in the mature auditory system. In: Manley GA, Klump GM, Köppl C, Fastl C, Oeckinghaus H, editors. Advances in hearing research. Singapore: World Scientific, p. 3–23.
  111. Jäncke L., Gaab N., Wustenberg T., Scheich H., Heinze H.J. (2001) Short-term functional plasticity in the human auditory cortex: an fMRI study. Brain Res. Cogn. Brain Res. 12(3):479-85.
  112. Jenkins W.M., Merzenich M.M. (1987) Reorganization of neocortical representations after brain injury: a neurophysiological model of the bases of recovery from stroke. Prog Brain Res. 71:249-66.
  113. Jenkins W.M., Merzenich M.M., Ochs M.T., Allard T., Guic-Robles E. (1990) Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. J. Neurophysiol. 63:82-104.
  114. Jones E.G. (1993) GABAergic neurons and their role in cortical plasticity in primates. Cereb Cortex. 3(5):361-72.
  115. Kaas J.H., Krubitzer L.A., Chino Y.M., Langston A.L., Polley E.H., Blair, N. (1990) Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science 248:229-231.
  116. Kaas J.H., Hackett T.A. (1998) Subdivisions of auditory cortex and levels of processing in primates. Audiol. Neurootol. 3(2-3):73-85.
  117. Kaas J.H., Hackett T.A. (2000) Subdivisions of auditory cortex and processing streams in primates. Proc. Natl. Acad. Sci. USA. 97(22):11793-9.
  118. Kaltenbach J.A., Saunders J.C. (1987) Spectral and temporal response patterns of single units in the chinchilla dorsal cochlear nucleus. Exp. Neurol. 96:406-419.
  119. Kaltenbach J.A., Czaja J.M., Kaplan C.R. (1992) Changes in the tonotopic map of the dorsal cochlear nucleus following induction of cochlear lesions by exposure to intense sound. Hear. Res. 59(2):213-23.
  120. Kamke M.R., Brown M., Irvine D.R. (2003) Plasticity in the tonotopic organization of the medial geniculate body in adult cats following restricted unilateral cochlear lesions. J. Comp. Neurol. 459(4):355-67.
  121. Kanno A., Nakasato N., Fujita S., Seki K., Kawamura T., Ohtomo S., Fujiwara S., Yoshimoto T. (1996) Right hemispheric dominance in the auditory evoked magnetic fields for pure-tone stimuli. Electroencephalogr. Clin. Neurophysiol. Suppl. 47:129-132.
  122. Kelly J.B., Liscum A., van Adel B., Ito M. (1998) Projections from the superior olive and lateral lemniscus to tonotopic regions of the rat's inferior colliculus. Hear. Res. 116(1-2):43-54.
  123. Kew J.J., Ridding M.C., Rothwell J.C., Passingham R.E., Leigh P.N., Sooriakumaran S., Frackowiak R.S., Brooks D.J. (1994) Reorganization of cortical blood flow and transcranial magnetic stimulation maps in human subjects after upper limb amputation. J. Neurophysiol. 72(5):2517-24.
  124. Knecht S,. Henningsen H., Elbert T., Flor H., Hohling C., Pantev C., Birbaumer N., Taub E. (1995) Cortical reorganization in human amputees and mislocalization of painful stimuli to the phantom limb. Neurosci. Lett. 201(3):262-4.
  125. Knecht S., Henningsen H., Elbert T., Flor H., Hoehling C., Pantev C., Taub E. (1996) Reorganizational and perceptual changes after amputation. Brain 119:1213-1219.
  126. Knecht S., Henningsen H., Hoehling C., Elbert T., Flor H., Pantev C., Taub E. (1998) Plasticity of plasticity? Changes in the pattern of perceptual correlates of reorganization after amputation. Brain 121:717-724.
  127. Kosaki H., Hashikawa T., He J., Jones E.G. (1997) Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. J. Comp. Neurol. 386(2):304-16.
  128. Kral A., Hartmann R., Tillein J., Heid S., Klinke R. (2002) Hearing after congenital deafness: central auditory plasticity and sensory deprivation. Cereb. Cortex. 12(8):797-807.
  129. Kulesza R.J. Jr, Spirou G.A., Berrebi A.S. (2003) Physiological response properties of neurons in the superior paraolivary nucleus of the rat. J. Neurophysiol. 89(4):2299-312.
  130. Kuriki S., Murase M. (1989) Neuromagnetic study of the auditory responses in right and left hemispheres of the human brain evoked by pure tones and speech sounds. Exp. Brain Res. 77(1):127-34.
  131. Lauter J.L., Herscovitch P., Formby C., Raichle M.E. (1985) Tonotopic organization in human auditory cortex revealed by positron emission tomography. Hear. Res 20:199-205.
  132. Lavikainen J., Huotilainen M., Pekkonen E., Ilmoniemi R.J., Naatanen R. (1994) Auditory stimuli activate parietal brain regions: a whole-head MEG study. Neuroreport 6:182-184.
  133. Lewy E.H., Kobrak H. (1936) The neural projection of the cochlear spirals of primary acoustic centers. Arch. Neurol. Psychiat. 35:839-52.
  134. Liberman M.C. (1982) The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency. J. Acoust. Soc. Am. 72(5):1441-9.
  135. Liegeois-Chauvel C., Musolino A., Badier J.M., Marquis P., Chauvel P. (1994) Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. Electroencephalogr. Clin. Neurophysiol. 92(3):204-14.
  136. Liegeois-Chauvel C., Giraud K., Badier J.M., Marquis P., Chauvel P. (2001) Intracerebral evoked potentials in pitch perception reveal a functional asymmetry of the human auditory cortex. Ann. N.Y. Acad. Sci. 930:117-132.
  137. Lockwood A.H., Salvi R.J., Coad M.L., Arnold S.A., Wack D.S., Murphy B.W., Burkard R.F. (1999) The functional anatomy of the normal human auditory system: responses to 0.5 and 4.0 kHz tones at varied intensities. Cereb. Cortex 9:65-76.
  138. Luce RD. (1986) Response times. Oxford University Press, New York.
  139. Lukas J.S., Kryter K.D. (1970) Awaking effects of simulated sonic boom and subsonic aircraft noise. In: B.L. Welch A.S. Welch (eds.) Physiological effects of noise. Plenum Press New York and London; S. 283-293.
  140. Lütkenhöner B., Steinstrater O. (1998) High-precision neuromagnetic study of the functional organization of the human auditory cortex. Audiol. Neurootol. 3:191-213.
  141. Lütkenhöner B., Krumbholz A., Seither-Preisler A. (2003) Studies of tonotopy based on wave N100 of the auditory evoked field are problematic. Neuroimage 19:935-949.
  142. Mäkelä J.P., Hari R. (1987) Evidence for cortical origin of the 40 Hz auditory evoked response in man. Electroencephalogr. Clin. Neurophysiol. 66(6):539-46.
  143. Mäkelä J.P., Ahonen A., Hämäläinen M., Hari R., Ilmoniemi R., Kajola M., Knuutila J., Lounasmaa O.V., McEvoy L., Salmelin R., et al (1993) Functionnal differences between auditory cortices of the two hemispheres revealed by whole-head neuromagnetometic recordings. Hum. Brain Mapping 1:48-56.
  144. Mäkelä J.P., Hari R. (1994) Neuromagnetic cortical signals in a patient with hydrocephalus. Neuroreport 5,1125-1128.
  145. Malmierca M.S., Rees A., Le Beau F.E., Bjaalie J.G. (1995) The laminar organisation of frequency-specific local axons within and between the inferior colliculi. J. Comp. Neurol. 357,124-144.
  146. Malmierca M.S., Le Beau F.E., Rees A. (1996) The topographical organization of descending projections from the central nucleus of the inferior colliculus in guinea pig. Hear. Res. 93(1-2):167-80.
  147. Malmierca M.S., Merchán M., Bajo V.M., Bjaalie J.G. (1997) The ventral nucleus of the lateral lemniscus in cat is tonotopically organized. Assoc. Res. Otolaryngol. Abstr. 20:164.
  148. Malmierca M.S., Leergaard T.B., Bajo V.M., Bjaalie J.G., Merchan M.A. (1998) Anatomic evidence of a three-dimensional mosaic pattern of tonotopic organization in the ventral complex of the lateral lemniscus in cat. J Neurosci. 18(24):10603-18.
  149. Manger P.R., Woods T.M., Jones E.G. (1996) Plasticity of the somatosensory cortical map in macaque monkeys after chronic partial amputation of a digit. Proc. R. Soc. Lond. B. Biol. Sci. 263(1372):933-9.
  150. Martin R.L., Webster W.R., Serviere J. (1988) The frequency organization of the inferior colliculus of the guinea pig: A [14C]-2-deoxyglucose study. Hear. Res. 33(3):245-55.
  151. May P., Tiitinen H., Ilmoniemi R.J., Nyman G., Taylor J.G., Naatanen R. (1999) Frequency change detection in human auditory cortex. J Comput Neurosci. 6(2):99-120.
  152. McDermott H.J., Lech M., Kornblum M.S., Irvine D.R. (1998) Loudness perception and frequency discrimination in subjects with steeply sloping hearing loss: possible correlates of neural plasticity. J. Acoust. Soc. Am. 104(4):2314-25.
  153. Meleca R.J., Kaltenbach J.A., Falzarano P.R. (1997) Changes in the tonotopic map of the dorsal cochlear nucleus in hamsters with hair cell loss and radial nerve bundle degeneration. Brain Res. 750(1-2):201-13.
  154. Melzer P. (1984) The central auditory pathway of the gerbil Psummomys obesus: A deoxyglucose study. Hear. Res. 15: 187-195.
  155. Menning H., Roberts L.E., Pantev C. (2000) Plastic changes in the auditory cortex induced by intensive frequency discrimination training. Neuroreport. 11(4):817-22.
  156. Merchan M.A., Saldana E., Plaza I. (1994) Dorsal nucleus of the lateral lemniscus in the rat: concentric organization and tonotopic projection to the inferior colliculus. J. Comp. Neurol. 342(2):259-78.
  157. Merchan M.A., Berbel P. (1996) Anatomy of the ventral nucleus of the lateral lemniscus in rats: a nucleus with a concentric laminar organization. J. Comp. Neurol. 372(2):245-63.
  158. Merchán M.A., Malmierca M.S., Bajo V.M., Bjaalie J.G. (1997) The nuclei of the lateral lemniscus: old views and new perspectives. In: Acoustical signal processing in the central auditory system (Syka J, ed), pp 211-226. New York: Plenum.
  159. Merzenich M.M., Brugge J.F. (1973) Representation of the cochlear partition of the superior temporal plane of the macaque monkey. Brain Res. 50:275-296.
  160. Merzenich M.M., Reid M.D. (1974) Representation of the cochlea within the inferior colliculus of the cat. Brain Res. 77(3):397-415.
  161. Merzenich M.M., Knight P.L., Roth G.L. (1975) Representation of cochlea within primary auditory cortex in the cat. J. Neurophysiol. 38:231-249.
  162. Merzenich M.M., Kaas J.H., Wall J.T., Sur M., Nelson R.J., Felleman D.J. (1983) Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience. 10(3):639-65.
  163. Merzenich M.M., Nelson R.J., Stryker M.P., Cynader M.S., Schoppmann A., Zook J.M. (1984) Somatosensory cortical map changes following digit amputation in adult monkeys. J. Comp. Neurol. 224(4):591-605.
  164. Metzler J., Marks P.S. (1979) Functional changes in cat somatic sensory-motor cortex during short-term reversible epidural blocks. Brain Res. 177(2):379-83.
  165. Moore D.R. Kowalchuk N.E. (1988) Auditory brainstem of the ferret: Effects of unilateral cochlear lesions on cochlear nucleus volume and projections to the inferior colliculus. J. Comp. Neurol. 272:503-515.
  166. Moore B.C.J., Glasberg, B.R. (1997) A model of loudness perception applied to cochlear hearing loss Aud. Neurosci. 3:289–311.
  167. Moore D.R., France S.J., McAlpine D., Mossop J.E., Versnel, H. (1997) Plasticity of inferior colliculus and auditory cortex following unilateral deafening in adult ferrets. In Syka, J. (Ed.), Acoustical Signal Processing in the Central Auditory System. New York, Plenum, pp. 489-499.
  168. Moore JK. 2000. Organization of the human superior olivary complex. Microsc. Res. Tech. 51:403–412.
  169. Morel A., Rouiller E., de Ribaupierre Y., de Ribaupierre F. (1987) Tonotopic organization in the medial geniculate body (MGB) of lightly anesthetized cats. Exp. Brain Res. 69(1):24-42.
  170. Morel A., Kaas J.H. (1992) Subdivisions and connections of auditory cortex in owl monkeys. J. Comp. Neurol. 318: 27-63.
  171. Morel A., Garraghty P.E., Kaas J.H. (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J. Comp. Neurol. 335: 437-459.
  172. Morest D.K., Bohne B.A. (1983) Noise-induced degeneration in the brain and representation of inner and outer hair cells. Hear. Res. 9(2):145-51.
  173. Muhlnickel W., Elbert T., Taub E., Flor H. (1998) Reorganization of auditory cortex in tinnitus. Proc. Natl. Acad. Sci. USA 95:10340-10343.
  174. Naka D., Kakigi R., Hoshiyama M., Yamasaki H., Okusa T., Koyama S. (1999) Structure of the auditory evoked magnetic fields during sleep. Neuroscience 93:573-583.
  175. Nakasato N., Fujita S., Seki K., Kawamura T., Matani A., Tamura I., Fujiwara S., Yoshimoto T. (1995) Functional localization of bilateral auditory cortices using an MRI- linked whole head magnetoencephalography (MEG) system. Electroencephalogr. Clin. Neurophysiol. 94:183-190.
  176. Naito Y., Okazawa H., Honjo I., Hirano S., Takahashi H., Shiomi Y., Hoji W., Kawano M., Ishizu K., Yonekura Y. (1995) Cortical activation with sound stimulation in cochlear implant users demonstrated by positron emission tomography. Brain Res. Cogn. Brain Res. 2(3):207-14.
  177. Naito Y., Hirano S., Fujiki N., Nishizawa S., Takahashi H., Kojima H., Yamaguchi S., Kawano M., Konishi J., Honjo I. (2000) Development and plasticity of the auditory cortex in cochlear implant users: a follow-up study by positron emission tomography. Adv. Otorhinolaryngol. 57:55-9.
  178. Nicolelis M.A.L., Lin R.C.S., Woodward D.J., Chapin J.K. (1993) Induction of immediate spatiotemporal changes in thalamic networks by peripheral block of ascending cutaneous information. Nature 361,533:536.
  179. Nishimura H., Doi K., Iwaki T., Hashikawa K., Oku N., Teratani T., Hasegawa T., Watanabe A., Nishimura T., Kubo T. (2000) Neural plasticity detected in short- and long-term cochlear implant users using PET. Neuroreport. 11(4):811-5.
  180. Oliver D.L., Morest D.K. (1984) The central nucleus of the inferior colliculus in the cat. J. Comp. Neurol. 222(2):237-64.
  181. Ottaviani F., Di Girolamo S., Briglia G., De Rossi G., Di Giuda D., Di Nardo W. (1997) Tonotopic organization of human auditory cortex analyzed by SPET. Audiology. 36(5):241-8.
  182. Panestos F., Nuñez A., Avendaño C. (1995) Local anaesthesia induces immediate receptive field changes in nucleus gracilis and cortex. Neuroreport 7,150:152.
  183. Pantev C., Hoke M., Lehnertz K., Lutkenhoner B., Anogianakis G., Wittkowski W. (1988) Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroencephalogr. Clin. Neurophysiol. 69:160-170.
  184. Pantev C, Hoke M, Lehnertz K, Lutkenhoner B, Fahrendorf G, Stober U. (1990) Identification of sources of brain neuronal activity with high spatiotemporal resolution through combination of neuromagnetic source localization (NMSL) and magnetic resonance imaging (MRI). Electroencephalogr. Clin. Neurophysiol. 75(3):173-84.
  185. Pantev C., Elbert T., Makeig S., Hampson S., Eulitz C., Hoke M. (1993) Relationship of transient and steady-state auditory evoked fields. Electroencephalogr. Clin. Neurophysiol. 88:389-396.
  186. Pantev C., Eulitz C., Elbert T., Hoke M. (1994) The auditory evoked sustained field: origin and frequency dependence. Electroencephalogr. Clin. Neurophysiol. 90(1):82-90.
  187. Pantev C., Bertrand O., Eulitz C., Verkindt C., Hampson S., Schuierer G., Elbert T. (1995) Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroencephalogr. Clin. Neurophysiol. 94:26-40.
  188. Pantev C., Roberts L.E., Elbert T., Ross B., Wienbruch C. (1996) Tonotopic organization of the sources of human auditory steady-state responses. Hear. Res. 101(1-2):62-74.
  189. Pantev C., Ross B., Berg P., Elbert T., Rockstroh B. (1998) Study of the human auditory cortices using a whole-head magnetometer: left vs. right hemisphere and ipsilateral vs. contralateral stimulation. Audiol. Neurootol. 3:183-190.
  190. Pantev C., Wollbrink A., Roberts L.E., Engelien A., Lutkenhoner B. (1999) Short-term plasticity of the human auditory cortex. Brain Res. 842(1):192-9.
  191. Pascual-Leone A., Torres F. (1993) Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain 116 ( Pt 1):39-52.
  192. Paul R.L., Goodman H., Merzenich M. (1972) Alterations in mechanoreceptor input to Brodmann's areas 1 and 3 of the postcentral hand area of Macaca mulatta after nerve section and regeneration. Brain Res. 39(1):1-19.
  193. Pelizzone R., Hari R., Makela J.P., Huttunen J., Ahlfors S., Hämäläinen M. (1987) Cortical origin of middle latency auditory evoked reponses in man. Neurosci. Let. 82:303-307.
  194. Pfingst B.E., Hienz R., Kimm J., Miller J. (1975) Reaction-time procedure for measurement of hearing. I. Suprathreshold functions. J. Acoust. Soc. Am. 57(2):421-30.
  195. Philibert B., Collet L., Vesson J.F., Veuillet E. (2002) Intensity-related performances are modified by long-term hearing aid use: a functional plasticity? Hear. Res. 165(1-2):142-51.
  196. Philibert B., Collet L., Vesson J.F., Veuillet E. (Soumis) Perceptual and electrophysiological evidence for functional plasticity in auditory rehabilitated listeners.
  197. Pieper F., Jürgens U. (2003) Neuronal activity in the inferior colliculus and bordering structures during vocalization in the squirrel monkey. Brain Res. 979(1-2):153-64.
  198. Pieron H. (1914) Recherche sur les lois de variation des temps de latence sensorielle en fonction des intensités excitatrices. Année Psycho. 20:17-96.
  199. Pons T.P., Garraghty P.E., Ommaya A.K., Kaas J.H., Taub E., Mishin M. (1991) Massive cortical reorganization after sensory deafferentation in adult macaques. Science 252:1857-1860.
  200. Ponton C.W., Vasama J.P., Tremblay K., Khosla D., Kwong B., Don M. (2001) Plasticity in the adult human central auditory system: evidence from late-onset profound unilateral deafness. Hear. Res. 154(1-2):32-44.
  201. Poon P.W., Chen X.Y., Hwang J.C. (1990) Altered sensitivities of auditory neurons in the rat midbrain following early postnatal exposure to patterned sounds. Brain Res. 524(2):327-30.
  202. Poon P.W., Chen X. (1992) Postnatal exposure to tones alters the tuning characteristics of inferior collicular neurons in the rat. Brain Res. 585(1-2):391-4.
  203. Popelar J., Erre J.P., Aran J.M., Cazals Y. (1994) Plastic changes in ipsi-contralateral differences of auditory cortex and inferior colliculus evoked potentials after injury to one ear in the adult guinea pig. Hear. Res. 72(1-2):125-34.
  204. Preuβ S. (1991) Elektrophysiologische und neuroanatomische charakterisierung der Kerne des lateralen lemniscus und der umgebenden auditorischen areale bei der ratte. Thesis, Universität Tübingen.
  205. Rademacher J., Morosan P., Schleicher A., Freund H.J., Zilles K. (2001) Human primary auditory cortex in women and men. Neuroreport. 12(8):1561-5.
  206. Rajan R., Irvine D.R.F., Wise L.Z., Heil P. (1993) Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J. Comp. Neurol. 338(1):17-49.
  207. Rajan R., Irvine D.R.F. (1996) Features of, and boundary conditions for, lesion-induced reorganization of adult auditory cortical maps. In: Salvi RJ, Henderson D, Fiorino F, Colletti V, editors. Auditory system plasticity and regeneration. New York: Thieme Medical, p. 224–37.
  208. Rajan R. (1998) Receptor organ damage causes loss of cortical surround inhibition without topographic map plasticity. Nat Neurosci. 1(2):138-43.
  209. Rajan R, Irvine DR.F. (1998) Neuronal responses across cortical field A1 in plasticity induced by peripheral auditory organ damage. Audiol. Neurootol. 3(2-3):123-44.
  210. Ramachandran V.S., Rogers-Ramachandran D.C., Stewart M. (1992) Perceptual correlates of massive cortical reorganization. Science 258:1159-1160.
  211. Ramachandran V.S. (1993) Behavioral and magnetoencephalographic correlates of plasticity in the adult human brain. Proc. Natl. Acad. Sci. USA 90:10413-10420.
  212. Rauschecker J.P., Tian B., Hauser M. (1995) Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268:111-114.
  213. Rauschecker JP. (1997) Processing of complex sounds in the auditory cortex of cat, monkey, and man. Acta Otolaryngol. Suppl. 532:34-8.
  214. Rauschecker J.P., Tian B., Pons T., Mishkin M. (1997) Serial and parallel processing in rhesus monkey auditory cortex. J. Comp. Neurol. 382:89-103.
  215. Recanzone G.H., Merzenich M.M., Jenkins WM, Grajski KA, Dinse HR (1992a) Changes in the distributed temporal response properties of SI cortical neurons reflect improvements in performance on a temporally based tactile discrimination task. J. Neurophysiol. 67:1031-1056.
  216. Recanzone G.H., Merzenich M.M., Jenkins W.M. (1992b) Frequency discrimination training engaging a restricted skin surface results in an emergence of a cutaneous response zone in cortical area 3a. J. Neurophysiol. 67(5):1057-70.
  217. Recanzone G.H., Merzenich M.M., Jenkins W.M., Grajski K.A., Dinse H.R. (1992c) Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. J. Neurophysiol. 67(5):1031-56.
  218. Recanzone G.H., Jenkins W.M., Hradek G.T., Merzenich M.M. (1992d) Progressive improvement in discriminative abilities in adult owl monkeys performing a tactile frequency discrimination task. J. Neurophysiol. 67(5):1015-30.
  219. Recanzone G.H., Schreiner C.E., Merzenich M.M. (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13(1):87-103.
  220. Recanzone G.H. (2000) Spatial processing in the auditory cortex of the macaque monkey. Proc. Natl. Acad. Sci. USA 97(22):11829-35.
  221. Reite M., Adams M., Simon J., Teale P., Sheeder J., Richardson D., Grabbe R. (1994) Auditory M100 component 1: relationship to Heschl's gyri. Brain Res. Cogn. Brain Res. 2:13-20.
  222. Rijntjes M., Tegenthoff M., Liepert J., Leonhardt G., Kotterba S., Müller S. (1997) Cortical reorganization in patients with facial palsy. Ann. Neurol. 41:621-630.
  223. Rivier F., Clarke S. (1997). Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. Neuroimage 6, 288–304.
  224. Roberts T.P., Poeppel D. (1996) Latency of auditory evoked M100 as a function of tone frequency. Neuroreport 7:1138-1140.
  225. Robertson D., Irvine D.R. (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J. Comp. Neurol. 282(3):456-71.
  226. Robinson K., Gatehouse S. (1995) Canges in intensity discrimination following monaural long-term use of a hearing aid. J. Acoust. Soc. Am. 97(2):1183-90.
  227. Robinson K., Gatehouse S. (1996) The time course of effects on intensity discrimination following monaural fitting of hearing aids. J. Acoust. Soc. Am. 99(2):1255-8.
  228. Rockel A.J., Jones E.G. (1973) Observations on the fine structure of the central nucleus of the inferior colliculus of the cat. J. Comp. Neurol. 147(1):61-92.
  229. Rodrigues-Dagaeff C., Simm G., De Ribaupierre Y., Villa A., De Ribaupierre F., Rouiller E.M. (1989) Functional organization of the ventral division of the medial geniculate body of the cat: evidence for a rostro-caudal gradient of response properties and cortical projections. Hear. Res. 39(1-2):103-25.
  230. Rojas D.C., Bawn S.D., Carlson J.P., Arciniegas D.B., Teale P.D., Reite M.L. (2002) Alterations in tonotopy and auditory cerebral asymmetry in schizophrenia. Biol. Psychiatry. 52(1):32-9.
  231. Romani G.L., Williamson S.J., Kaufman L. (1982a) Tonotopic organization of the human auditory cortex. Science 216:1339-1340.
  232. Romani G.L., Williamson S.J., Kaufman L., Brenner D. (1982b) Characterization of the human auditory cortex by the neuromagnetic method. Exp. Brain Res. 47(3):381-93.
  233. Roricht S., Meyer B.U., Niehaus L., Brandt S.A. (1999) Long-term reorganization of motor cortex outputs after arm amputation. Neurology. 53(1):106-11.
  234. Rosburg T., Kreitschmann-Andermahr I., Emmerich E., Nowak H., Sauer H. (1998) Hemispheric differences in frequency dependent dipole dipole orientation of the human auditory evoked field component N100m. Neurosc. letters 258:105-108.
  235. Rosburg T., Kreitschmann-Andermahr I., Nowak H., Sauer H. (2000) Habituation of the auditory evoked field component N100m in male patients with schizophrenia. J. Psychiatr. Res. 34(3):245-54.
  236. Rose J.E., Woosley C.N. (1949) The relations of thalamic connections, cellular structure and evocable electrical activity in the auditory region of the cat. J. Comp. Neurol. 91,441-467.
  237. Rose J.E., Greenwood D.D., Goldberg J.M., Hind J.E. (1963) Some discharge characteristics of single neurons in the inferior colliculus of the cat. I. Tonotopic organization, relation of spike-counts to tone intensity and firing patterns of single elements. J. Neurophysiol. 26:294-320.
  238. Roth G.L., Aitkin L.M., Andersen R.A., Merzenich M.M. (1978) Some features of the spatial organization of the central nucleus of the inferior colliculus of the cat. J. Comp. Neurol. 182:661–680.
  239. Rouiller E.M., Rodrigues-Dagaeff C., Simm G., De Ribaupierre Y., Villa A., De Ribaupierre F. (1989) Functional organization of the medial division of the medial geniculate body of the cat: tonotopic organization, spatial distribution of response properties and cortical connections. Hear Res. 39(1-2):127-42.
  240. Ryan A.F., Woolf N.K., Sharp F.R. (1982) Tonotopic organization in the central auditory pathway of the Mongolian gerbil: a 2-deoxyglucose study. J. Comp. Neurol. 207(4):369-80.
  241. Ryan A.F., Furlow Z., Woolf N.K., Keithley E.M. (1988) The spatial representation of frequency in the rat dorsal cochlear nucleus and inferior colliculus. Hear. Res. 36(2-3):181-9.
  242. Ryan A.F., Woolf N.K. (1988) Development of tonotopic representation in the Mongolian gerbil: a 2-deoxyglucose study. Brain Res. 469(1-2):61-70.
  243. Saade N.E., Jundi A.S., Jabbur S.J., Banna N.R. (1982) Dorsal column input to inferior raphe centralis neurons. Brain Res. 250(2):345-8.
  244. Saint Marie R.L., Luo L., Ryan A.F. (1999a) Effects of stimulus frequency and intensity on c-fos mRNA expression in the adult rat auditory brainstem. J. Comp. Neurol. 404(2):258-70.
  245. Saint Marie R.L., Luo L., Ryan A.F. (1999b) Spatial representation of frequency in the rat dorsal nucleus of the lateral lemniscus as revealed by acoustically induced c-fos mRNA expression. Hear. Res. 128(1-2):70-4.
  246. Saldana E., Berrebi A.S. (2000) Anisotropic organization of the rat superior paraolivary nucleus. Anat. Embryol. (Berl). 202(4):265-79.
  247. Sando I. (1965) The anatomical interrelationships of the cochlear nerve fibers. Acta Otolaryngol. 59:417–436.
  248. Scharf B. (1978) Loudness. In E.C. Carterette and M.P. Friedman (Eds.), Handbook of perception, vol.IV. Academic Press, New York. 187-242.
  249. Scheffler K., Bilecen D., Schmid N., Tschopp K., Seelig J. (1998) Auditory cortical responses in hearing subjects and unilateral deaf patients as detected by functional magnetic resonance imaging. Cereb. Cortex. 8(2):156-63.
  250. Schmid L.M., Rosa M.G.P., Calford M.B., Ambler J.S. (1996). Visuotopic reorganization in the primary visual cortex of adult cats following monocular and binocular retinal lesions. Cereb. Cortex 6:388:405.
  251. Schönwiesner M., Von Cramon Y., Rübsamen R. (2002) Is it tonotopy after all ? Neuroimage 17:1144-1161.
  252. Schoups A., Vogels R., Qian N., Orban G. (2001) Practising orientation identification improves orientation coding in V1 neurons. Nature. 412(6846):549-53.
  253. Schwaber M.K., Garraghty P.E., Kaas J.H. (1993) Neuroplasticity of the adult primate auditory cortex following cochlear hearing loss. Am. J. Otol. 14(3):252-8.
  254. Schweitzer L., Cant N.B. (1984) Development of the cochlear innervation of the dorsal cochlear nucleus of the hamster. J. Comp. Neurol. 225(2):228-43.
  255. Seitz P.F., Rakerd B. (1997) Auditory stimulus intensity and reaction time in listeners with longstanding sensorineural hearing loss. Ear Hear. 18(6):502-12.
  256. Semple M.N., Aitkin L.M. (1979) Representation of sound frequency and laterality by units in central nucleus of cat inferior colliculus. J. Neurophysiol. 42(6):1626-39.
  257. Serviere J., Webster W.R. (1981) A combined electrophysiological and [14C] 2-deoxyglucose study of the frequency organization of the inferior colliculus of the cat. Neurosci Lett. 27(2):113-8.
  258. Serviere J., Webster W.R., Calford M.B. (1984) Isofrequency labelling revealed by a combined [14C]-2-deoxyglucose, electrophysiological, and horseradish peroxidase study of the inferior colliculus of the cat. J. Comp. Neurol. 228(4):463-77.
  259. Shah N.J., Jancke L., Grosse-Ruyken M.L., Muller-Gartner H.W. (1999) Influence of acoustic masking noise in fMRI of the auditory cortex during phonetic discrimination. J. Magn. Reson. Imaging. 9(1):19-25.
  260. Shore S.E., Helfert R.H, Bledsoe S.C. Jr, Altschuler R.A., Godfrey D.A. (1991) Descending projections to the dorsal and ventral divisions of the cochlear nucleus in guinea pig. Hear. Res. 52(1):255-68.
  261. Snyder R.L., Sinex D.G. (1998) Tonotopic reorganization of cat primary auditory cortex after acute lesions of restricted sectors of the spiral ganglion. Soc. Neurosci. Abstr. 24:904.
  262. Snyder R.L., Sinex D.G., McGee J.D., Walsh E.W. (2000) Acute spiral ganglion lesions change the tuning and tonotopic organization of cat inferior colliculus neurons. Hear. Res. 147(1-2):200-20.
  263. Snyder R.L., Sinex D.G. (2002) Immediate changes in tuning of inferior colliculus neurons following acute lesions of cat spiral ganglion. J. Neurophysiol. 87(1):434-52.
  264. Spangler K.M., Warr W.B., Henkel C.K. (1985) The projections of principal cells of the medial nucleus of the trapezoid body in the cat. J. Comp. Neurol. 238(3):249-62.
  265. Spangler K.M., Warr W.B. (1991). The descending auditory system. In: Altschuler RA, Bobbin RP, Clopton BM, Hoffman DW, editors. Neurobiology of hearing: the central auditory system. New York: Raven Press. p 27–45.
  266. Spitzer M.W., Semple, M.N. (1995). Neurons sensitive to interaural phase disparity in gerbil superior olive: Diverse monaural and temporal response properties. J. Neurophysiol. 73, 1668-1690.
  267. Stanton S.G., Harrison R.V. (2000) Projections from the medial geniculate body to primary auditory cortex in neonatally deafened cats. J. Comp. Neurol.426(1):117-29.
  268. Steinberg J.C., Gardner M.B. (1937) The dependency of hearing impairment on sound intensity. J. Acoust. Soc. Am. 9:11-23.
  269. Sterr A., Muller M.M., Elbert T., Rockstroh B., Pantev C., Taub E. (1998a) Changed perceptions in Braille readers. Nature. Jan 8;391(6663):134-5.
  270. Sterr A., Muller M.M., Elbert T., Rockstroh B., Pantev C., Taub E. (1998b) Perceptual correlates of changes in cortical representation of fingers in blind multifinger Braille readers. J. Neurosci. 18(11):4417-23.
  271. Strainer J.C., Ulmer J.L., Yetkin F.Z., Haughton V.M., Daniels D.L., Millen S.J. (1997) Functional MR of the primary auditory cortex: an analysis of pure tone activation and tone discrimination. AJNR Am. J. Neuroradiol. 18:601-610.
  272. Stufflebeam S.M., Poeppel D., Rowley H.A., Roberts T.P. (1998) Peri-threshold encoding of stimulus frequency and intensity in the M100 latency. Neuroreport. 9(1):91-4.
  273. Suga N., Zhang Y., Yan J. (1997) Sharpening of frequency tuning by inhibition in the thalamic auditory nucleus of the mustached bat. J. Neurophysiol. 77(4):2098-114.
  274. Syka J., Robertson D., Johnstone B.M. (1988) Efferent descending projections from the inferior colliculus in the guinea pig. In: Syka, J., Masterton, R.B. (Eds). Auditory Pathway: Structure and Function. Plenum, pp. 299-303.
  275. Szikla G., Bourvure G., Hori T., Petrov V. (1977) Angiography of the human brain cortex. Springer-Verlag, Berlin.
  276. Talavage T.M., Ledden P.J., Benson R.R., Rosen B.R., Melcher J.R. (2000) Frequency-dependent responses exhibited by multiple regions in human auditory cortex. Hear. Res. 150(1-2):225-44.
  277. Talwar S.K., Gerstein G.L. (2001) Reorganization in awake rat auditory cortex by local microstimulation and its effect on frequency-discrimination behavior. J. Neurophysiol. 86(4):1555-72.
  278. Tecchio F., Bicciolo G., De Campora E., Pasqualetti P., Pizzella V., Indovina I., Cassetta E., Romani G.L., Rossini P.M. (2000) Tonotopic cortical changes following stapes substitution in otosclerotic patients: a magnetoencephalographic study. Hum. Brain Mapp. 10(1):28-38.
  279. Teuber H.L., Kreiger H.P., Bender M.B. (1949) Reorganization of sensory function in amputation stumps: two-point discrimination. Fed. Proc. 8:156.
  280. Thai-Van H., Micheyl C., Norena A., Collet L. (2002) Local improvement in auditory frequency discrimination is associated with hearing-loss slope in subjects with cochlear damage. Brain. 125(Pt 3):524-37.
  281. Thai-Van H., Micheyl C., Moore B.C., Collet L. (2003) Enhanced frequency discrimination near the hearing loss cut-off: a consequence of central auditory plasticity induced by cochlear damage? Brain. 126(Pt 10):2235-45.
  282. Tiitinen H., Alho K., Huotilainen M., Ilmoniemi R.J., Simola J., Naatanen R. (1993) Tonotopic auditory cortex and the magnetoencephalographic (MEG) equivalent of the mismatch negativity. Psychophysiology. 30(5):537-40.
  283. Tremblay K., Kraus N., McGee T. (1998) The time course of auditory perceptual learning: neurophysiological changes during speech-sound training. Neuroreport. 9(16):3557-60.
  284. Tsuchitani C., Boudreau J.C. (1969) Stimulus level of dichotically presented tones and cat superior olive S-segment cell discharge. J. Acoust. Soc. Am. 46(4):979-88.
  285. Tsuchitani C. (1977) Functional organization of lateral cell groups of cat superior olivary complex. J. Neurophysiol. 40(2):296-318.
  286. Tuomisto T., Hari R., Katila T., Poutanen T., Varpula T. (1983) Studies of auditory evoked magnetic and electric responses: Modality specificity and modeling. Nuovo Cimento 2D:471-483.
  287. Turner R., Howseman A., Rees G.E., Josephs O., Friston K. (1998) Functional magnetic resonance imaging of the human brain: data acquisition and analysis. Exp. Brain Res. 123(1-2):5-12.
  288. Ulmer J.L., Biswal B.B., Yetkin F.Z., Mark L.P., Mathews V.P., Prost R.W., Estkowski L.D., McAuliffe T.L., Haughton V.M., Daniels D.L. (1998) Cortical activation response to acoustic echo planar scanner noise. J. Comput. Assist. Tomogr. 22(1):111-9.
  289. Vasama J.P., Makela J.P., Pyykko I., Hari R. (1995) Abrupt unilateral deafness modifies function of human auditory pathways. Neuroreport. 6(7):961-4.
  290. Verkindt C., Bertrand O., Perrin F., Echallier J-F., Pernier J. (1995) Tonotopic organization of the human auditory cortex: N100 topography and multiple dipole model analysis. Electroencephalogr. Clin. Neurophysiol. 96:143-156.
  291. Wall J.T., Felleman D.J., Kaas J.H. (1983) Recovery of normal topography in the somatosensory cortex of monkeys after nerve crush and regeneration. Science. 221(4612):771-3.
  292. Wall J.T., Kaas J.H., Sur M., Nelson R.J., Felleman D.J., Merzenich M.M. (1986) Functional reorganization in somatosensory cortical areas 3b and 1 of adult monkeys after median nerve repair: possible relationships to sensory recovery in humans. J. Neurosci. 6(1):218-33.
  293. Warr W.B. (1982) Parallel ascending pathways from the cochlear nucleus: Neuroanatomical evidence of functional specialization. In: Neff WD (ed) Contributions to sensory physiology, vol 7. Academic Press, New York, pp 1–38.
  294. Webster D.B. (1971) Projection of the cochlea to cochlear nuclei in Merriam's kangaroo rat. J Comp Neurol. 143(3):323-40.
  295. Weinberger N.M., Ashe J.H., Metherate R., Diamond D.M., and Bakin J. (1990) Retuning auditory cortex by learning: a preliminary model of receptive filed plasticity. Concepts Neurosci. 1:91-123.
  296. Weinberger N.M., Javid R., Lepan B. (1993) Long-term retention of learning-induced receptive-field plasticity in the auditory cortex. Proc. Natl. Acad. Sci. USA. 90(6):2394-8.
  297. Weinberger N.M. (1995) Dynamic regulation of receptive fields and maps in the adult sensory cortex. Annu. Rev. Neurosci. 18:129-58.
  298. Weinberger N.M., Bakin J.S. (1998) Research on auditory cortex plasticity. Science. 280(5367):1174.
  299. Welford A.T. (1980) Choice reaction time: Basic concepts. In AT Welford (Ed.), RT. Academic Press, New York, 73-128.
  300. Wessinger C.M., Buonocore M., Kussmaul C.L., Mangun G.R. (1997) Tonotopy in human auditory cortex examined with functional magnetic resonance imaging. Hum. Brain Map. 5:18-25.
  301. Willard F.H., Martin G.F. (1983) The auditory brainstem nuclei and some of their projections to the inferior colliculus in the North American opossum. Neuroscience 10:1203-1232.
  302. Williamson S.J., Lu Z.L., Karron D., Kaufman L. (1991) Advantages and limitations of magnetic source imaging. Brain Topogr. 4:169-180.
  303. Willott J.F., Demuth R.M., Lu S.M., Van Bergem P. (1982) Abnormal tonotopic organization in the ventral cochlear nucleus of the hearing-impaired DBA/2 mouse. Neurosci. Lett. 34(1):13-7.
  304. Willott J.F. (1984) Changes in frequency representation in the auditory system of mice with age-related hearing impairment. Brain Res. 309(1):159-62.
  305. Willott J.F., Parham K., Hunter K.P. (1991) Comparison of the auditory sensitivity of neurons in the cochlear nucleus and inferior colliculus of young and aging C57BL/6J and CBA/J mice. Hear. Res. 53(1):78-94.
  306. Willott J.F., Aitkin L.M., McFadden S.L. (1993) Plasticity of auditory cortex associated with sensorineural hearing loss in adult C57BL/6J mice. J. Comp. Neurol. 329(3):402-11.
  307. Willott J.F., Carlson S., Chen H. (1994) Prepulse inhibition of the startle response in mice: relationship to hearing loss and auditory system plasticity. Behav. Neurosci. 108(4):703-13.
  308. Willott J.F., Carlson S. (1995) Modification of the acoustic startle response in hearing-impaired C57BL/6J mice: Prepulse augmentation and prolongation of prepulse inhibition. Behav. Neuros. 109:396-403.
  309. Willott J.F., Turner J.G. (2000) Neural plasticity in the mouse inferior colliculus: relationship to hearing loss, augmented acoustic stimulation, and prepulse inhibition. Hear. Res. 147(1-2):275-81.
  310. Winer J.A., Saint Marie R.L., Larue D.T., Oliver D.L. (1996) GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proc. Natl. Acad. Sci. USA. 93(15):8005-10.
  311. Winer J.A., Sally S.L., Larue D.T., Kelly J.B. (1999) Origins of medial geniculate body projections to physiologically defined zones of rat primary auditory cortex. Hear. Res. 130(1-2):42-61.
  312. Wood C.C. (1993) Humain brain mapping in both time and Space. Hum. Brain Map. 1(4):iii-vi
  313. Wynn Parry C.B., Salter M. (1976) Sensory re-education after median nerve lesions. The Hand, 8, 250–257.
  314. Xerri C., Stern J.M., Merzenich M.M. (1994) Alterations of the cortical representation of the rat ventrum induced by nursing behavior. J. Neurosci. 14(3 Pt 2):1710-21.
  315. Yajima Y., Hayashi Y. (1989) Response properties and tonotopical organization in the dorsal cochlear nucleus in rats. Exp. Brain Res. 75(2):381-9.
  316. Yamamoto T., Uemura T., Llinas R. (1992) Tonotopic organization of human auditory cortex revealed by multi-channel SQUID system. Acta Otolaryngol. 112(2):201-4.
  317. Yan J., Suga N. (1996) The midbrain creates and the thalamus sharpens echo-delay tuning for the cortical representation of target-distance information in the mustached bat. Hear. Res. 93(1-2):102-10.
  318. Yang T.T., Gallen C.C., Ramachandran V.S., Cobb S., Schwartz B.J., Bloom F.E. (1994) Noninvasive detection of cerebral plasticity in adult human somatosensory cortex. Neuroreport 5:701-704.
  319. Yang Y., Engelien A., Engelien W., Xu S., Stern E., Silbersweig D.A. (2000) A silent event-related functional MRI technique for brain activation studies without interference of scanner acoustic noise. Magn. Reson. Med. 43:185–190.
  320. Yin T.C.T., Chan J.C.K. (1990). Interaural time sensitivity in medial superior olive of cat. J. Neurophysiol. 64:465-488.
  321. Zhang L.I., Bao S., Merzenich M.M. (2001) Persistent and specific influences of early acoustic environments on primary auditory cortex. Nat. Neurosci. 4(11):1123-30.
  322. Zouridakis G., Simos P.G., Papanicolaou A.C. (1998) Multiple bilaterally asymmetric cortical sources account for the N1m component. Brain Topogr. 10:183-189.