Bibliographie

  1. Aarden, B. (2003). Dynamic melodic expectancy. Ph.D. Dissertation. School of Music, Ohio State University.
  2. Alain, C., Arnott, S.R., Hevenor, S., Graham, S., & Grady, C.L. (2001). « What » and « where » in the human auditory system. Proceedings of the national academy of sciences, 98 (21), 12301-12306.
  3. Ayari, M., & McAdams, S. (2003). Aural analysis of arabic improvised instrumental Music (taqsîm). Music Perception, 21, 159-216.
  4. Bartlett, J.C., & Dowling, W.J. (1980). Recognition of transposed melodies: a key-distance effect in developmental perspective. Journal of Experimental Psychology: Human Perception and Performance, 6 (3), 501-515.
  5. Besson, M, & Faïta, F. (1995). An event-related potential (ERP) study of musical expectancy: Comparison of musicians with nonmusicians. Journal of Experimental Psychology: Human Perception and Performance, 21 (6), 1278-1296.
  6. Besson, M., Schön, D., Moreno, S., Santos, A., & Magne, C. (2007). Influence of musical expertise and musical training on pitch processing in music and language. Restorative Neurology and Neuroscience, 25, 399-410.
  7. Bharucha, J.J. (1984). Event hierarchies, tonal hierarchies, and assimilation : A reply to Deutsch and Dowling. Journal Journal of Experimental Psychology: General, 113, 421-425.
  8. Bharucha, J.J. (1987). Music cognition and perceptual facilitation: A connectionist framework. Music Perception, 5, 1-30.
  9. Bharucha, J.J., & Krumhansl, C. L. (1983). The representation of harmonic structure in music: Hierarchies of stability as a function of context. Cognition, 13 (1), 63-102.
  10. Bharucha, J. J., & Stoeckig, K. (1986). Reaction time and musical expectancy: Priming of chords. Journal of Experimental Psychology: Human Perception and Performance, 12 (4), 403-410.
  11. Bharucha, J.J., & Stoeckig, K. (1987). Priming of chords: Spreading activation or overlapping frequency spectra? Perception & Psychophysics, 41 (6), 519-524.
  12. Bigand, E. (1990). Abstraction of two forms of underlying structure in a tonal melody. Psychology of Music, 18, 45-59.
  13. Bigand, E. (1994). Contributions de la musique aux recherches sur la cognition auditive humaine. In S. McAdams & E. Bigand (Eds.), Penser les sons : La psychologie cognitive de l’audition (pp. 249-298). Paris : PUF.
  14. Bigand, E. (1997). Perceiving musical stability: The effect of tonal structure, rhythm and musical expertise. Journal of Experimental Psychology: Human Perception and Performance, 21, 808-822.
  15. Bigand, E. (2003). Traveling through Lerdahl’s Tonal Pitch Space Theory : A psychological perspective, Musicae Scientae, 7 (1), 121-155.
  16. Bigand, E., & Parncutt, R. (1999). Perceiving musical tension in long chord sequences. Psychological Research, 62, 237-254.
  17. Bigand, E., & Pineau, M. (1997). Global context effects on musical expectancy. Perception & Psychophysics, 59 (7), 1098-1107.
  18. Bigand, E., Poulin, B., Tillmann, B., & D'Adamo, D. (2003) Cognitive versus sensory components in harmonic priming effects. Journal of Experimental Psychology: Human Perception and Performance 29 (1), 159-171.
  19. Bigand, E., & Poulin-Charronnat, B. (2006). Are we “experienced listeners”? A review of the musical capacities that do not depend on formal musical training. Cognition, 100, 100-130.
  20. Bigand, E., Tillmann, B., Poulin, B., D’Adamo, D.A., Madurell, F. (2001). The effect of harmonic context on phoneme monitoring in vocal music. Cognition, 81, 11-20.
  21. Bigand, E., Tillmann, B., & Poulin-Charronnat, B. (2006). A module for syntactic processing in music? Trends in Cognitive Sciences, 10 (5), 195-196.
  22. Bigand, E., Tillmann, B., Poulin-Charronnat, B., & Manderlier, D. (2005). Repetition priming: Is music special? The Quarterly Journal of Experimental Psychology, 58A (8), 1347-1375.
  23. Boltz, M. (1989a). Perceiving the end: effects of tonal relationships on melodic completion. Journal of Experimental Psychology: Human Perception and Performance, 15, 749-761.
  24. Boltz, M. (1989b). Rhythm and "good endings": effects of temporal structure on tonality judgments. Perception & Psychophysics, 46 (1), 9-17.
  25. Boltz, M. (1991). Some structural determinants of melody recall. Memory & Cognition, 19 (3), 239-251.
  26. Brattico, E., Näätänen, R., Tervaniemi, M. (2002). Context effects on pitch perception in musicians and nonmusicians: Evidence form event-related-potential recordings. Music Perception, 19 (2), 199-222.
  27. Brattico, E., Tervaniemi, M., Näätänen, R., & Peretz, I. (2006). Musical scale properties are automatically processed in the human auditory cortex. Brain Research, 1117, 162-174.
  28. Bregman, A.S. (1990). Auditory scene analysis: The perceptual organization of sound, Cambridge, MA: MIT Press.
  29. Budge, H. (1943). A study of chord frequencies. New York: Bureau of Publications, Teachers College, Columbia University.
  30. Castellano, M.A., Bharucha, J.J., & Krumhansl, C.L. (1984). Tonal hierarchies in the music of North India. Journal of Experimental Psychology: General, 113, 394-412.
  31. Chomsky, N. (1968). Language and Mind, New York, Harcourt, Brace, Jovanovich.
  32. Cohen, J. (1988). Statistical power analysis for the behavioural sciences (2nd ed.). New York:
  33. Academic Press.
  34. Cuddy, L.L., & Lunney, C.A. (1995). Expectancies generated by melodic intervals: Perceptual judgments of melodic continuity. Perception & Psychophysics, 57, 451-462.
  35. Cutting, J.E., Bruno, N., Brady, N.P., & Moore, C. (1992). Selectivity, scope, and simplicity of models: a lesson from fitting judgments of perceived depth, Journal of Experimental Psychology : General, 121 (3), 364-381.
  36. Delbé, C., Poulin-Charronnat, B., & Bigand, E. (2007, janvier). La perception musicale requiert-elle des processus de traitement syntaxique ? Journées Fondatrices Perception Sonore, Lyon.
  37. Dewar, K.M., Cuddy, L.L., & Mewhort, D.J.K. (1977). Recognition memory for single tones with and without context. Journal of Experimental Psychology: Human Learning and Memory, 3 (1), 60-67.
  38. Dowling, W.J. (1978). Scale and contour : two components of a theory of memory for melodies. Psychological Review, 85 (4), 341-354.
  39. Dowling, W.J., & Harwood, D.L. (1986). Music cognition. Orlando, Florida: Academic Press.
  40. Eerola, T. (2003). The Dynamics of Musical Expectancy: Cross-Cultural and Statistical Approaches to Melodic Expectations. Doctoral dissertation. Jyväskylä Studies in Arts 9, Jyväskylä.
  41. Escoffier, N. & Tillmann, B. (2008). The tonal function of a task-irrelevant chord modulates speed of visual processing. Cognition, 107, 1070-1083.
  42. Fraisse, P. (1982). Rhythm and tempo. In D. Deutsch (Ed.), Psychology of music. (pp.149-180). New-York, Academic Press.
  43. Francès, R. (1958). La perception de la musique. Paris: Vrin, Transl. J.W., Dowling (1988): The Perception of Music. Hillsdale, NJ: Erlbaum.
  44. Frankland, B., & Cohen, J. (1990). Expectancy profiles generated by major scales: group differences in ratings and reaction time. Psychomusicology, 9 (2), 173-192.
  45. Friederici, A.D. (2002). Towards a neural basis of auditory sentence processing. Trends in Cognitive Sciences, 6, 78-84.
  46. Friedman, D., Cycowicz, Y.M., Gaeta, H. (2001). The novelty P3: an event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neuroscience and Biobehavioral Reviews, 25, 355-373.
  47. Giard, M-H., Fort, A., & Mouchetant-Rostaing, Y., Pernier, J. (2000). Neurophysiological mechanisms of auditory selective attention in humans. Frontiers in Bioscience, 5, 84-94.
  48. Gilbert, C.D., & Sigman, M. (2007). Brain states : Top-down influences in sensory processing. Neuron, 54, 677-692. 
  49. Greenberg, G.Z., & Larkin, W.D. (1968). Frequency-response characteristic of auditory observers detecting signals of a single frequency in noise: the probe-signal method. The Journal of the Acoustical Society of America, 44 (6), 1513-1523.
  50. Hafter, E.R., Schlauch, R.S., & Tang, J. (1993). Attending to auditory filters that were not stimulated directly. The Journal of the Acoustical Society of America, 94 (2), 743-747.
  51. Hajda, J.M., Kendall, R.A., Carterette, E.C., & Harshberger, M.L. (1997). Methodological issues in timbre research. In Deliège & Sloboda (Eds.), The Perception and Cognition of Music, 253-306. Hove: Psychology Press.
  52. Hébert, S., Peretz, I., & Gagnon, L. (1995). Perceiving the tonal ending of tune excerpts: The roles of pre-existing representation and musical expertise. Canadian Journal of Experimental Psychology, 49, 193-209.
  53. Helmholtz, H.L. von (1885/1954). On the sensations of tone as a physiological basis for the theory of music. (A.J. Ellis, Trans.) London: Longmans, Green.
  54. Hillyard, S.A., Hink, R.F., Schwent, V.L., & Picton, T.W. (1973). Electrical signs of selective attention in the human brain. Science, 182, 177-180.
  55. Howard, J.H., O’Toole, A.J., Parasuraman, R., & Bennett, K.B. (1984). Pattern-directed attention in uncertain-frequency detection. Perception & Psychophysics, 35 (2), 256-264.
  56. Huron, D. (2006). Sweet anticipation: Music and the psychology of expectation. Cambridge, MA: MIT Press.
  57. Huron, D. (2008). Lost in music. Nature, 453, 456-457.
  58. Huron, D., & Parncutt, R. (1993). An improved model of tonality perception incorporating pitch salience and echoic memory. Psychomusicology, 12, 154-171.
  59. Hyde, K.L., & Peretz, I. (2004). Brains that are out of tune but in time. Psychological Science, 15 (5), 356-360.
  60. Janata, P. (1995). ERP measures assay the degree of expectancy violation of harmonic contexts in music. Journal of Cognitive Neuroscience, 7,153-164.
  61. Janata, P., Tillmann, B., & Bharucha, J.J. (2002). Listening to polyphonic music recruits domain-general attention and working memory circuits. Cognitive, Affective, & Behavioral Neuroscience, 2 (2), 121-140.
  62. Johnsrude, I.S., Giraud, A.L., & Frackowiak, R.S.J. (2002). Functional imaging of the auditory system: The use of positron emission tomography. Audiology Neuro Otology, 7, 251-276.
  63. Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological Review, 83(5), 323-355.
  64. Jones, M. R. (1987). Dynamic pattern structure in music: Recent theory and research. Perception & Psychophysics, 41(6), 621-634.
  65. Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96 (3), 459-491.
  66. Kanizsa, G. (1979). Organization in vision: Essays on Gestalt perception. New York: Praeger
  67. Knopoff, L., & Hutchinson, W. (1981). Entropy as a measure of style : The influence of sample length. Journal of Music Theory, 27, 75-97.
  68. Koelsch, S. (sous presse).Music-syntactic processing and auditory memory – Similarities and differences between ERAN and MMN. Psychophysiology.
  69. Koelsch, S., Gunter, T.C., Friederici, A.D., & Schröger, E. (2000). Brain indices of music processing: “Non-musicians” are musical. Journal of Cognitive Neuroscience, 12 (3),520-541.
  70. Koelsch, S., Jentschke, S., Sammler, D., & Mietchen, D. (2007). Untangling syntactic and sensory processing: An ERP study of music perception. Psychophysiology, 44, 476-490.
  71. Koelsch, S., & Mulder, J. (2002). Electric brain responses to inappropriate harmonies during listening to expressive music. Clinical Neurophysiology, 113, 862-869.
  72. Koelsch, S., & Sammler, D. (2008). Cognitive components of regularity processing in the auditory domain. PLoS ONE, 3 (7): e2650. doi:10.1371/journal.pone.0002650.
  73. Koelsch, S., Schröger, E., & Gunter, T.C. (2002). Music matters: Preattentive musicality of the human brain. Psychophysiology, 39, 38-48.
  74. Koelsch, S., Schröger, E., & Tervaniemi, M. (1999). Superior pre-attentive auditory processing in musicians. NeuroReport, 10, 1309-1313.
  75. Kohonen, T. (1995). Self-Organizing Maps. Springer: Berlin.
  76. Krishnan, A., Xu, Y., Gandour, J., & Cariani, P. (2005). Encoding of pitch in the human brainstem is sensitive to language experience. Cognitive Brain Research, 25, 161-168.
  77. Krohn, K.I., Brattico, E., Välimäki, V., & Tervaniemi, M. (2006). Neural representations of the hierarchical scale pitch structure. Music Perception, 24 (3), 281-296.
  78. Krumhansl, C.L. (1979). The Psychological Representation of Musical Pitch in a Tonal Context. Cognitive Psychology, 11, 346-374.
  79. Krumhansl, C. L. (1990). Cognitive foundations of musical pitch. New York: Oxford University Press.
  80. Krumhansl, C.L. (1995). Effects of musical context on similarity and expectancy. Systematische Musikwissenschaft, 3, 211-250.
  81. Krumhansl, C.L., Bharucha, J.J., & Castellano, M. (1982). Key distance effects on perceived harmonic structure in music. Perception & Psychophysics, 32, 96-108.
  82. Krumhansl, C. L., & Kessler, E. J. (1982). Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychological Review, 89 (4), 334-368.
  83. Krumhansl, C.L., & Shepard, R.N. (1979). Quantification of the hierarchy of tonal functions within a diatonic context. Journal of Experimental Psychology: Human Perception and Performance, 5, 579-594.
  84. Krumhansl, C.L., Toivanen, P., Eerola, T., Toiviainen, P., Järvinen, T., Louhivuori, J. (2000). Cross-cultural music cognition: cognitive methodology applied to North Sami yoiks. Cognition, 76, 13-58.
  85. Kveraga, K., Ghuman, A.S., & Bar, M. (2007). Top-down predictions in the cognitive brain. Brain and Cognition, 65, 145-168.
  86. Lampinen, J., & Oja, E. (1992). Clustering properties of hierarchical self-organizing maps. Journal of Mathematical Imaging and Vision, 2, 261-272.
  87. Lange, K., & Heil, M. (2008). Temporal attention in the processing of short melodies: evidence from event-related potentials. Musicae Scientiae, 12 (1), 27-48.
  88. Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106 (1), 119-159.
  89. Large, E.W., & Palmer, C. (2002). Perceiving temporal regularity in music. Cognitive Science, 26, 1-37.
  90. Lebrun-Guillaud, G. (2006). Perception de la hauteur et du temps dans des séquences musicales tonales : études comportementales et neuropsychologiques. Thèse de doctorat de Neuropsychologie, Université Lyon 1.
  91. Lebrun-Guillaud, G., & Tillmann, B. (sous presse). Integration of pitch and time in the memory of chord sequences. Current Psychology of Cognition / Cahiers de Psychologie Cognitive.
  92. Lebrun-Guillaud, G., & Tillmann, B. (2007). Influence of a tone's tonal function on temporal change detection. Perception & Psychophysics, 69 (8), 1450-1459.
  93. Leman, M. (2000). An auditory model of the role of short-term memory in probe-tone ratings. Music Perception, 17 (4), 435-463.
  94. Lerdahl, F. (1988). Tonal Pitch Space. Music Perception, 5, 315-345.
  95. Lerdahl, F. (2001). Tonal Pitch Space. New York: Oxford University Press.
  96. Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. Cambridge: The MIT press.
  97. Lerdahl, F., & Krumhansl, C.L. (2007). Modeling tonal tension. Music Perception, 24 (4), 329-366.
  98. Liégeois-Chauvel, C., Giraud, K., Badier, J-M., Marquis, P., & Chauvel, P. (2001). Intracerebral evoked potentials in pitch perception reveal a functional asymmetry of the human auditory cortex. Annals of The New York Academy of Sciences, 930, 117-132.
  99. Lynch, M.P., & Eilers, R.E. (1992). A study of perceptual development for musical tuning. Perception & Psychophysics, 52 (6), 599-608.
  100. Lynch, M.P., Eilers, R.E., Oller, K.D., Urbano, R.C., & Wilson, P. (1991). Influences of acculturation and musical sophistication on perception of musical interval patterns. Journal of Experimental Psychology: Human Perception and Performance, 17 (4), 967-975.
  101. Manning, C.D., & Schütze, H. (1999). Foundations of statistical natural language processing. Cambridge, MA: MIT Press.
  102. Margulis, E. (2005). A model of melodic expectation. Music Perception, 22 (4), 663-714.
  103. McAdams, S., Bigand, E. (Eds) (1994). Penser les sons : La psychologie cognitive de l’audition. Paris : PUF.
  104. McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., & Krimphoff, J. (1995). Perceptual scaling of synthesized musical timbres: Common dimensions, specificities, and latent subject classes. Psychological Research, 58, 177-192.
  105. McClelland, J.L., & Elman, J.L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18, 1-86.
  106. McClelland, J.L., Mirman, D., & Holt, L.L. (2006). Are there interactive processes in speech perception ? TRENDS in Cognitive Sciences, 10 (8), 363-369.
  107. McClelland, J.L., & Rumelhart, D.E. (1981). An interactive activation model of context effects in letter perception : Part 1. An account of basic findings. Psychological Review, 86, 287-330.
  108. McQueen, J.M., Norris, D., & Cutler, A. (2006). Are there really interactive processes in speech perception ? TRENDS in Cognitive Sciences, 10 (12), 533.
  109. Meyer, D.E., & Schvaneveldt, R.W. (1971). Facilitation in recognizing pairs of words: evidence of a dependence between retrieval operations. Journal of Experimental Psychology, 90 (2), 227-234.
  110. Meyer, D.E., Schvaneveldt, R.W., Ruddy, M.G. (1972). Activation of lexical memory. Paper presented at the Psychonomic Society meetings, St. Louis.
  111. Meyer, L.B. (1956). Emotion and Meaning in Music. Chicago : University of Chicago Press.
  112. Mimura, M., Goodglass, H., & Milberg, W. (1996). Preserved semantic priming effect in alexia. Brain and Language, 54, 434-446.
  113. Mirman, D., McClelland, J.L., & Holt, L.L. (2006). Response to McQueen et al.: Theoretical and empirical arguments support interactive processing. TRENDS in Cognitive Sciences, 10 (12), 534.
  114. Musacchia, G., Sams, M., Skoe, E., & Kraus, N. (2007). Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proceedings of the National Academy of Sciences, 104 (40), 15894-15898.
  115. Nager, W., Kohlmetz, C., Altenmüller, E., Rodriguez-Fornells, A., & Münte, T.F. (2003). The fate of sounds in conductors’ brains: an ERP study. Cognitive Brain Research, 17, 83-93.
  116. Narmour, E. (1990). The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization Model. Chicago Press, 1990.
  117. Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound : A review and an analysis of the component structure. Psychophysiology, 24, 375-425.
  118. Näätänen, R., & Winkler, I. (1999). The concept of auditory stimulus representation in cognitive neuroscience. Psychological Bulletin, 125, 826-859.
  119. Palmer, C., Krumhansl, C.L. (1987a). Independent temporal and pitch structures in determination of musical phrase. Journal of Experimental Psychology : Human Perception and Performance , 13 (1), 116-126.
  120. Palmer, C., Krumhansl, C.L. (1987b). Pitch and temporal contributions to musical phrase perception : effects of harmony, performance timing, and familiarity. Perception & Psychophysics, 41 (6), 505-518.
  121. Parncutt, R. (1988). Revision of Terhardt’s psychoacoustical model of the roots of a musical chord. Music Perception, 6, 65-94.
  122. Parncutt, R. (1989). Harmony: A psychoacoustical approach. Berlin: Springer.
  123. Parncutt, R. (1994). Template-matching models of musical pitch and rhythm perception. Journal of New Music Research, 23, 145-167.
  124. Patel, A.D., Gibson, E., Ratner, J., Besson, M., & Holcomb, P.J. (1998). Processing syntactic relations in language and music: An event-related potential study. Journal of Cognitive Neuroscience, 10 (6),717-733.
  125. Pearce, M.T., & Wiggins, G.A. (2006). Expectation in melody: The influence of context and learning. Music Perception, 23 (5), 377-405.
  126. Peretz, I., Kolinsky, R. (1993). Bounderies of separability between Melody and rhythm in music discrimination : a neuropsychological perspective. The Quarterly of Experimental Psychology, 46 A (2), 301-327.
  127. Perrot, X., Ryvlin, P., Isnard, J., Guénot, M., Catenoix, H., Fischer, C., Mauguière, F., & Collet, L. (2006). Evidence for corticofugal modulation of peripheral auditory activity in humans. Cerebral Cortex, 16, 941-948.
  128. Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: one phenomenon, two approaches. Trends in Cognitive Sciences, 10 (5), 233-238.
  129. Piston, W. (1978). Harmony (4th ed.). New York: Norton.
  130. Plack, C.J. (2005). The Sense of Hearing New Jersey: Lawrence Erlbaum Associates.
  131. Plack, C.J., & Oxenham, A.J. (2005). The psychophysics of pitch. In C.J. Plack, A.J. Oxenham, R.R. Fay, & A.N. Popper (Eds.), Pitch: Neural Coding and Perception (pp.99-146). New York: Springer.
  132. Poulin-Charronnat, B., Bigand, E., & Koelsch, S. (2006). Processing of musical syntax tonic versus subdominant: An event-related potential study. Journal of Cognitive Neuroscience, 18 (9), 1545-1554.
  133. Poulin-Charronnat, B., Bigand, E., Madurell, F., & Peereman, R. (2005). Musical structure modulates semantic priming in vocal music. Cognition, 94, B67-B78.
  134. Reber, A.S. (1967). Implicit learning of artificial grammars. Journal of verbal learning and verbal behavior, 6, 855-863.
  135. Reber, A.S. (1989). Implicit learning and tacit knowledge. Journal of Experimental Psychology: General, 118 (3), 219-235.
  136. Regnault, P., Bigand, E., & Besson, M. (2001). Different brain mechanisms mediate sensitivity to sensory consonance and harmonic context: Evidence from auditory event-related brain potentials. Journal of Cognitive Neuroscience, 13 (2),241-255.
  137. Rosch, E. (1975). Cognitive reference points. Cognitive Psychology, 7, 532-547.
  138. Saffran, J.R., Aslin, R.N., & Newport, E.L. (1996). Statistical learning by 8-month-old infants. Science, 274, 1926-1928.
  139. Saffran, J.R., Johnson, E.K., Aslin, R.N., & Newport, E.L. (1999). Statistical learning of tone sequences by human infants and adults. Cognition, 70, 27-52.
  140. Samuel, A.G. (2001). Knowing a word affects the fundamental perception of the sounds within it. Psychological Science, 12 (4), 348-351.
  141. Scharf, B.(1998). Auditory attention: the psychoacoustical approach. In Pashler et al. (Eds.), Attention, 75-117. Hove: Psychology Press
  142. Scharf, B., Quigley, S., Aoki, C., Peachey, N., & Reeves, A. (1987). Focused auditory attention and frequency selectivity. Perception & Psychophysics, 42 (3), 215-223.
  143. Schellenberg, E.G. (1996). Expectancy in melody: Tests of the implication-realization model. Cognition, 58, 75-125.
  144. Schellenberg, E.G. (1997). Simplifying the implication-realization model of melodic expectancy. Music Perception, 14 (3), 295-318.
  145. Schellenberg, E.G., Adachi, M., Purdy, K.T., & McKinnon, M.C. (2002). Expectancy in Melody: Tests of Children and Adults. Journal of Experimental Psychology: General, 131(4), 511-537.
  146. Schellenberg, E.G., Bigand, E., Poulin-Charronnat B., Garnier C., & Stevens C. (2005). Children’s implicit knowledge of harmony in Western music. Developmental Science, 8 (6), 551-566.
  147. Schmuckler, M.A., Boltz, M.G. (1994). Harmonic and rhythmic influences on musical expectancy. Perception & Psychophysics, 56 (3),313-325.
  148. Schön, D., Magne, C., & Besson, M. (2004). The music of speech: Music training facilitates pitch processing in both music and language. Psychophysiology, 41, 341-349.
  149. Schröger, E. (1997). On the detection of auditory deviations: A pre-attentive activation model. Psychophysiology, 34, 245-257.
  150. Schubert, E., & Wolfe, J. (2006). Does timbral brightness scale with frequency and spectral centroid? Acta Acustica United With Acustica, 92, 820-825.
  151. Seger, C.A. (1994). Implicit learning. Psychological Bulletin, 115, 2, 163-196.
  152. Shepard, R.N., & Jordan, D.S. (1984). Auditory illusions demonstrating that tones are assimilated to an internalized musical scale. Science, 226, 1333-1334.
  153. Tanner, W., & Norman, R. (1954). The human use of information: II. Signal detection for the case of an unknown signal parameter. Transactions of the Institute of Radio Engineering, Professional Group on Information Theory, 4, 222-227.
  154. Tekman, H.G., & Bharucha, J.J. (1998). Implicit knowledge versus psychoacoustic similarity in priming of chords. Journal of Experimental Psychology: Human Perception and Performance, 24, 252-260.
  155. Terhardt, E., Stoll, G., & Seewann, M. (1982a). Pitch of complex signals according to virtual-pitch theory: Tests, examples, and predictions. Journal of the Acoustical Society of America, 71 (3), 671-678.
  156. Terhardt, E., Stoll, G., & Seewann, M. (1982b). Algorithm for extraction of pitch and pitch salience from complex tonal signals. Journal of the Acoustical Society of America, 71 (3), 679-688.
  157. Tervaniemi, M., Just, V., Koelsch, S., Widmann, A., & Schröger, E. (2005). Pitch discrimination accuracy in musicians vs nonmusicians: an event-related potential and behavioral study. Experimental Brain Research, 161, 1-10.
  158. Tiberghien, G., Abdi, H., Desclés, J-P., Georgieff, N., Jeannerod, M., Le Ny, J-F., Livet, P., Pynte, J., & Sabah, G. (2002). Dictionnaire des Sciences Cognitives. Paris: Armand Colin.
  159. Tillmann, B. (2005). Implicit investigations of tonal knowledge in nonmusician listeners. In G. Avanzini, L. Lopez, S. Koelsch, & M. Majno (Eds.), The Neurosciences and Music II: From Perception to Performance (Annals of the New York Academy of Sciences, Vol. 1060, pp. 100-110). New York: New York Academy of Sciences.
  160. Tillmann, B., Bharucha, J. J., & Bigand, E. (2000). Implicit learning of tonality: A self-organizing approach. Psychological Review, 107 (4), 885-913.
  161. Tillmann, B., & Bigand, E. (2001). Global context effect in normal and scrambled musical sequences. Journal of Experimental Psychology: Human Perception and Performance, 27 (5), 1185-1196.
  162. Tillmann, B., Bigand, E., Escoffier, N., & Lalitte, P. (2006). The influence of musical relatedness on timbre discrimination. European Journal of Cognitive Psychology, 18 (3), 343-358.
  163. Tillmann, B., Bigand, E., Pineau, M. (1998). Effects of local and global context on harmonic expectancy. Music Perception, 16, 99-118.
  164. Tillmann, B., Hoch, L. & Marmel, F. (soumis). Influence du contexte sur le traitement en musique et en langage. In : J. Morais & R. Kolinsky (Eds.), Musique, Langage, Emotion, Proceedings du XXX° Symposium of APSLF. Presses Universitaires de Rennes.
  165. Tillmann, B., Janata, P., Birk, J., & Bharucha, J.J. (2003). The costs and benefits of tonal centers for chord processing. Journal of Experimental Psychology: Human Perception and Performance, 29 (2), 470-482.
  166. Tillmann, B., Janata, P., Birk, J., & Bharucha, J.J. (2008). Tonal centers and expectancy: Facilitation or inhibition of chords at the top of the harmonic hierarchy? Journal of Experimental Psychology: Human Perception and Performance, 34 (4), 1031-1043.
  167. Tillmann, B., & Lebrun-Guillaud, G. (2006). Influence of tonal and temporal expectations on chord processing and on completion judgments of chord sequences. Psychological Research, 70, 345-358.
  168. Tillmann, B., & Marmel, F. (soumis). Musical expectations within chord sequences: Facilitation due to tonal stability without final wrap-up processes. Soumis pour publication dans European Journal of Cognitive Psychology.
  169. Tillmann, B., & McAdams, S. (2004). Implicit learning of musical timbre sequences: Statistical regularities confronted with acoustical (dis)similarities. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 5, 1131-1142.
  170. Tillmann, B., Peretz, I., Bigand E., & Gosselin, N. (2007). Harmonic priming in an amusic patient : The power of implicit tasks. Cognitive Neuropsychology, 24 (6), 603-622.
  171. Trehub, S.E., Bull, D., & Thorpe, L.A. (1984). Infants’ perception of melodies: The role of melodic contour. Child Development, 55 (3), 821-830.
  172. Trost, W.J., & Schön, D. (2008, janvier). The influence of the meter in music on attentional processes. Colloque “Musique, langage, cerveau”, Dijon, 17-18 janvier.
  173. Van Immerseel, L., & Martens, J. (1992). Pitch and voiced/unvoiced determination with an auditory model. Journal of the Acoustical Society of America, 91, 3511-3526.
  174. Wallace, M.N., Shackleton, T.M., & Palmer, A.R. (2002). Phase-locked responses to pure tones in the primary auditory cortex. Hearing Research, 172, 160-171.
  175. Warrier, C.M., Belin, P., Merlet, I., & Zatorre, R. (1999). fMRI study examining effect of melodic context on pitch discrimination. Society for Neuroscience Abstracts, 25 , 1629.
  176. Warrier, C.M., & Zatorre, R.J. (2002). Influence of tonal context and timbral variation on perception of pitch. Perception & Psychophysics, 64 (2), 198-207.
  177. Wedin, L., Goude, G. (1972). Dimension analysis of the perception of the instrumental timbre. Scandinavian Journal of Psychology, 13, 228-240.
  178. Winter, I.M. (2005). The neurophysiology of pitch. In C.J. Plack, A.J. Oxenham, R.R. Fay, & A.N. Popper (Eds.), Pitch: Neural Coding and Perception (pp.99-146). New York: Springer.
  179. Woldorff, M.G. (1999). Auditory attention. In R. Wilson & F. Keil (Eds.), The MIT encyclopedia of the cognitive sciences (pp.50-52). Cambridge, MA : MIT Press.
  180. Woldorff, M.G., Gallen, C.C., Hampson, S.R., Hillyard, S.A., Pantev, C., Sobel, D., Bloom, F.E. (1993). Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proceedings of the National Academy of Sciences, 90, 8722-8726.
  181. Woldorff, M.G., Hansen, J.C., & Hillyard, S.A. (1987). Evidence for effects of selective attention in the mid-latency range of the human auditory event-related potential. Electroenceph. and Clin. Neurophys.,Suppl. 40, 146-54.
  182. Woldorff, M.G., & Hillyard, S.A. (1991). Modulation of early auditory processing during selective listening to rapidly presented tones. Electroencephalography and clinical Neurophysiology, 79, 170-191.
  183. Wong, P.C.M., Skoe, E., Russo, N.M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10 (4), 420-422.
  184. Young, A.W., Hellawell, D., & DeHaan E.H.F. (1988). Cross-domain semantic priming in normal subjects and a prosopagnosic patient. Quaterly Journal of Experimental Psychology, 40A, 561-580.
  185. Youngblood, J.E. (1958). Style as information. Journal of Music Theory, 2, 24-35.