Bibliographie

  1. Allport, A. (1993). Attention and Control: Have We Been Asking the Wrong Questions? A Critical Review of Twenty-Five Years. In D. E. Meyer & S. Kornblum, Attention and performance XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience (MIT Press., pp. 183-218). Cambridge: The MIT Press.
  2. Altmann, C. F., Deubelius, A., & Kourtzi, Z. (2004). Shape Saliency Modulates Contextual Processing in the Human Lateral Occipital Complex. Journal of Cognitive Neuroscience, 16(5), 794-804.
  3. Anllo-vento, L., Luck, S. J., & Hillyard, S. A. (1998). Spatio-temporal dynamics of attention to color: evidence from human electrophysiology. Human Brain Mapping, 6, 216-238.
  4. Ansorge, U., Horstmann, G., & Carbone, E. (2005). Top-down contingent capture by color : evidence from RT distribution analyses in a manual choice reaction task. Acta Psychologica, 120, 243-266. doi: 10.1016/j.actpsy.2005.04.004.
  5. Ansorge, U., Horstmann, G., & Scharlau, I. (2010). Top–down contingent attentional capture during feed-forward visual processing. Acta Psychologica. doi: 10.1016/j.actpsy.2010.05.008.
  6. Aron, A. R. (2007). The neural basis of inhibition in cognitive control. The Neuroscientist, 13(3), 214-28. doi: 10.1177/1073858407299288.
  7. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in cognitive sciences, 8(4), 170-7. doi: 10.1016/j.tics.2004.02.010.
  8. Astafiev, S. V., Shulman, G. L., Stanley, C. M., Snyder, A. Z., Essen, V., C, D., et al. (2003). Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. Journal of Neuroscience, 23(11), 4689-4699.
  9. Awh, E., Armstrong, K. M., & Moore, T. (2006). Visual and oculomotor selection: links, causes and implications for spatial attention. Trends in cognitive sciences, 10(3), 124-30. doi: 10.1016/j.tics.2006.01.001.
  10. Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception and Psychophysics, 55(5), 485-496.
  11. Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121(1), 65-94.
  12. Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577-560.
  13. Barsalou, L. W. (2008). Grounded cognition. Annual review of psychology, 59, 617-45. doi: 10.1146/annurev.psych.59.103006.093639.
  14. Barsalou, L. W. (2010). Grounded Cognition: Past, Present, and Future. Topics in Cognitive Science. doi: 10.1111/j.1756-8765.2010.01115.x.
  15. Bartels, A., & Zeki, S. (2000). The architecture of the colour centre in the human visual brain: new results and a review. The European journal of neuroscience, 12(1), 172-93.
  16. Barton, J. J., Pandita, M., Thakkar, K., Gov, D. C., & Manoach, D. S. (2008). The relation between antisaccade errors, fixation stability and prosaccade errors in schizophrenia. Experimental Brain Research, 186, 273-282. doi: 10.1007/s00221-007-1235-2.
  17. Beck, D. M., & Kastner, S. (2005). Stimulus context modulates competition in human extrastriate cortex. Nature neuroscience, 8(8), 1110-6. doi: 10.1038/nn1501.
  18. Beck, D. M., & Kastner, S. (2007). Stimulus similarity modulates competitive interactions in human visual cortex. Journal of Vision, 7, 1-12. doi: 10.1167/7.2.19.Introduction.
  19. Beck, D. M., & Kastner, S. (2009). Top-down and bottom-up mechanisms in biasing competition in the human brain. Vision Research, 49(10), 1154-1165. Elsevier Ltd. doi: 10.1016/j.visres.2008.07.012.
  20. Becker, S. I. (2008). Can intertrial effects of features and dimensions be explained by a single theory? Journal of Experimental Psychology: Human Perception and Performance, 34(6), 1417-40. doi: 10.1037/a0011386.
  21. Becker, S. I. (2010). The role of target-distractor relationships in guiding attention and the eyes in visual search. Journal of Experimental Psychology: General, 139(2), 247-65. doi: 10.1037/a0018808.
  22. Belopolsky, A. V., Zwaan, L., Theeuwes, J., & Kramer, A. F. (2007). The size of an attentional window modulates attentional capture by color singletons. Psychonomic Bulletin & Review, 14(5), 934-938.
  23. Bichot, N. P., Rossi, A. F., & Desimone, R. (2005). Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4. Science, 308(529). doi: 10.1126/science.1109676.
  24. Biederman, I., & Cooper, E. E. (1992). Size In variance in Visual Object Priming. Perception, 18(1), 121-133.
  25. Braun, J. (1994). Visual Search among Items of Different Salience: Removal Attention Mimics a Lesion in Extrastriate Area V4. The Journal of Neuroscience, 14(2), 554-567.
  26. Braun, J., & Julesz, B. (1998). Withdrawing attention at little or no cost: Detection and discrimination tasks. Perception and Psychophysics, 60(1), 1-23.
  27. Broadbent, D. (1958). Perception and communication. London: Pergamon.
  28. Bundesen, C. (1998). A computational theory of visual attention. Philosophical Transactions of the Royal Society B:, 353, 1771-1781.
  29. Buneo, C. A., & Andersen, R. A. (2006). The posterior parietal cortex : Sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia, 44, 2594-2606. doi: 10.1016/j.neuropsychologia.2005.10.011.
  30. Burrows, B. E., & Moore, T. (2009). Influence and Limitations of Popout in the Selection of Salient Visual Stimuli by Area V4 Neurons. Journal of Neuroscience, 29(48), 15169 -15177. doi: 10.1523/JNEUROSCI.3710-09.2009.
  31. Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 3156, 1860-62. doi: 10.1126/science.1138071.
  32. Carrasco, M. (2006). Covert attention increases contrast sensitivity : psychophysical , neurophysiological and neuroimaging studies. Progress in brain research, 154(06), 33-70. doi: 10.1016/S0079-6123(06)54003-8.
  33. Carrasco, M., Ling, S., & Read, S. (2004). Attention alters appearance. Nature Neuroscience, 7(3), 308-313. doi: 10.1038/nn1194.
  34. Chawla, D., Rees, G., & Friston, K. J. (1999). The physiological basis of attentional modulation in extrastriate visual areas. Nature Neuroscience, 2(7), 671-676.
  35. Chelazzi, L., Duncan, J., Miller, E. K., & Desimone, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80, 2918-2940.
  36. Chelazzi, L., Miller, E. K., Duncan, J., & Desimone, R. (1993). A neural basis for visual search in inferior temporal cortex. Nature, 363(6427), 345-7.
  37. Chikazoe, J., Konishi, S., Asari, T., & Jimura, K. (2007). Activation of Right Inferior Frontal Gyrus during Response Inhibition across Response Modalities. Journal of cognitive neuroscience, 19(1), 69-80.
  38. Chun, M. M. (2000). Contextual cueing of visual attention. Trends in cognitive sciences, 4(5), 170-178.
  39. Clark, V. P., Parasuraman, R., Keil, K., Kulansky, R., Fannon, S., Maisog, J. M., et al. (1997). Selective attention to face identity and color studied with fMRI. Human Brain Mapping, 5(4), 293-297. doi: 10.1002/(SICI)1097-0193(1997)5:4<293::AID-HBM15>3.3.CO;2-F.
  40. Cohen, J. D., & Servan-Schreiber, D. (1992). Context, Cortex, and Dopamine: A connectionist approach to behavior and biology in schizophrenia. Psychological Review, 99(1), 45-77.
  41. Conway, A. R., Cowan, N., & Bunting, M. F. (2001). The cocktail party phenomenon revisited: The importance of working memory capacity. Psychonomic Bulletin & Review, 8(2), 331-335.
  42. Conway, A. R., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547-552.
  43. Corbetta, M., & Shulman, G. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201-215. doi: 10.1038/nrn755.
  44. Corbetta, M., Kincade, J. M., & Shulman, G. L. (2002). Neural systems for visual orienting and their relationships to spatial working memory. Journal of cognitive neuroscience, 14(3), 508-23. doi: 10.1162/089892902317362029.
  45. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., & Petersen, S. E. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. Journal of neuroscience, 11(8), 2383-402.
  46. Corbetta, M., Miezin, F. M., Shulman, G. L., & Petersen, S. E. (1993). A PET study of visuospatial attention. The Journal of neuroscience, 13(3), 1202-26.
  47. Courtney, S. M., Roth, J. K., & Sala, J. B. (2007). A Hierarchical Biased-Competition Model of Domain-Dependent Working Memory Maintenance and Executive Control. In N. Osaka, R. Logie, & M. D'Esposito, Working Memory- Behavioural & Neural Correlates (pp. 1-30). Oxford University Press.
  48. Coxon, J. P., Stinear, C. M., & Byblow, W. D. (2007). Selective inhibition of movement. Journal of neurophysiology, 97(3), 2480-9. doi: 10.1152/jn.01284.2006.
  49. Dalton, B. H., & Behm, D. G. (2007). Effects of noise and music on human and task performance: A systematic review. Occupational Ergonomics, 7, 1-10.
  50. de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291, 1803-1806.
  51. de Fockert, J. W., Rees, G., Frith, C., & Lavie, N. (2004). Neural Correlates of Attentional Capture in Visual Search. Journal of Cognitive Neuroscience, 16(5), 751-759.
  52. Deco, G., & Rolls, E. T. (2005). Attention, short-term memory, and action selection: a unifying theory. Progress in Neurobiology, 76, 236-256.
  53. Deco, G., & Rolls, E. T. (2005). Attention, short-term memory, and action selection: a unifying theory. Progress in neurobiology, 76(4), 236-56. doi: 10.1016/j.pneurobio.2005.08.004.
  54. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193-222.
  55. Donk, M., & van Zoest, W. (2008). Effects of Salience Are short-lived. Psychological Science, 19(7), 733-739.
  56. Duncan, J. (1996). Competing brain systems in selective perception and action. In T. Inui & J. L. McClelland, Attention and Performance XVI (MIT Press., pp. 549-578). Cambridge.
  57. Duncan, J. (2006). EPS mid-career award 2004: Brain mechanisms of attention. The Quarterly Journal Of Experimental Psychology, 59(1), 2-27. doi: 10.1080/17470210500260674.
  58. Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433-458.
  59. Duncan, J., Emslie, H., Williams, P., Johnson, R., & Freer, C. (1996). Intelligence and the Frontal Lobe: The Organization of Goal-Directed Behavior. Cognitive Psychology, 30, 257-303.
  60. Duncan, J., Humphreys, G., & Ward, R. (1997). Competitive brain activity in visual attention. Current Opinion in Neurobiology, 7, 255-261.
  61. Duncan, J., Parr, A., Woolgar, A., Thompson, R., Bright, P., Cox, S., et al. (2008). Goal neglect and Spearman’s g: competing parts of a complex task. Journal of Experimental Psychology: General, 137(1), 131-148. doi: 10.1037/0096-3445.137.1.131.
  62. Egeth, H. E., & Yantis, S. (1997). Visual attention: control, representation, and time course. Annual Review of Psychology, 48, 269-297.
  63. Egeth, H. E., Leonard, C. J., & Leber, A. B. (2010). Why salience is not enough: Reflections on top-down selection in vision. Acta psychologica, 10-12. doi: 10.1016/j.actpsy.2010.05.012.
  64. Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and clinical neurophysiology, 99(3), 225-34.
  65. Eimer, M., & Kiss, M. (2010). The top-down control of visual selection and how it is linked to the N2pc component - A reply to Theeuwes (2010). Acta psychologica, 3-5. doi: 10.1016/j.actpsy.2010.04.010.
  66. Eimer, M., Kiss, M., Press, C., & Sauter, D. (2009). The Roles of Feature-Specific Task Set and Bottom-Up Salience in Attentional Capture : An ERP Study, 35(5), 1316 -1328. doi: 10.1037/a0015872.
  67. Einhäuser, W., Rutishauer, U., & Koch, C. (2008). Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli. Journal of Vision, 8(2), 1-19. doi: 10.1167/8.2.2.
  68. Eriksen, C. W., & St James, J. D. (1986). Visual attention within and around the field of focal attention: a zoom lens model. Perception and Psychophysics, 40(4), 225-240.
  69. Everling, S., Dorris, M. C., Klein, R. M., & Munoz, D. P. (1999). Role of the primate superior colliculus in preparation and execution of anti-saccades and pro-saccades. Journal of Neuroscience, 19(7), 2740-2754.
  70. Fecteau, J. H., & Munoz, D. P. (2006). Salience, relevance, and firing: a priority map for target selection. Trends in Cognitive Sciences, 10, 382-390. doi: 10.1016/j.tics.2006.06.011.
  71. Fecteau, J. H., Bell, A. H., & Munoz, D. P. (2004). Neural correlates of the automatic and goal-driven biases in orienting spatial attention. Journal of neurophysiology, 92(3), 1728-37. doi: 10.1152/jn.00184.2004.
  72. Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in primate cerebral cortex. Cerebral Cortex, 1, 1-47.
  73. Fernandez D. N. (2009). Endogenous and exogenous attentional processes bias competition at the same perceptual locus. Poster at the third Rovereto Attention Workshop, Rovereto, Italia, october 29th – 31th; 2009.
  74. Fernandez D. N. (soumis). L'attention visuelle sélective : interactions entre influences endogènes et exogènes. L'Année Psychologique.
  75. Fernandez, D. N., & Lesourd, M. (submitted). Feature-based endogenous and exogenous selective attention genuinely integrate within the visual system. Brain Research.
  76. Fernandez, D. N., & Michael, G. A. (in revision). Salience effect time-course and endogenous influences. Quarterly Journal of Experimental Psychology.
  77. Fernandez-duque, D., & Johnson, M. L. (2002). Cause and Effect Theories of Attention : The Role of Conceptual Metaphors. Review of General Psychology, 6(2), 153-165. doi: 10.1037//1089-2680.6.2.153.
  78. Findlay, J. M., & Walker, R. (1999). A model of saccade generation based on parallel processing and competitive inhibition. Behavioral and Brain Sciences, 22, 661-721.
  79. Folk, C. L., & Remington, R. (2010). A critical evaluation of the disengagement hypothesis. Acta psychologica, 10-12. doi: 10.1016/j.actpsy.2010.04.012.
  80. Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030-1044.
  81. Folk, C. L., Remington, R. W., & Wright, J. H. (1994). The structure of attentional control: contingent attentional capture by apparent motion, abrupt onset and color. Journal of Experimental Psychology: Human Perception and Performance, 20(2), 317-329.
  82. Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 22(5), 629-629. doi: 10.1016/j.bbi.2008.05.010.
  83. Foulsham, T., & Underwood, G. (2007). How does the purpose of inspection influence the potency of visual salience in scene perception?, 36, 1123-1139. doi: 10.1068/p5659.
  84. Found, A., & Müller, H. J. (1996). Searching for unknown feature targets on more than one dimension: investigating a "dimension-weighting" account. Perception & psychophysics, 58(1), 88-101.
  85. Frick, R. W. (1996). The appropriate use of null hypothesis testing. Psychological Methods, 1(4), 379-390.
  86. Frith, C. D. (1992). The cognitive neuropsychology of schizophrenia. East Sussex, U.K.: Erlbaum.
  87. Funahashi, S. (2006). Prefrontal cortex and working memory processes. Neuroscience, 139, 251-61. doi: 10.1016/j.neuroscience.2005.07.003.
  88. Giesbrecht, B., Woldorff, M. G., Song, A. W., & Mangun, G. R. (2003). Neural mechanisms of top-down control during spatial and feature attention. NeuroImage, 19, 496-512.
  89. Godefroy, O. (2003). Frontal syndrome and disorders of executive functions. Journal of Neurology, 250, 1-6. doi: 10.1007/s00415-003-0918-2.
  90. Godijn, R., & Theeuwes, J. (2002). Programming of Endogenous and Exogenous Saccades : Evidence for a Competitive Integration Model. Journal of experimental psychology: human perception and perception, 28(5), 1039 -1054. doi: 10.1037//0096-1523.28.5.1039.
  91. Godijn, R., & Theeuwes, J. (2003). The Relationship Between Exogenous and Endogenous Saccades and Attention. In J. Hyönä, R. Radach, & H. Deubel, The Mind's Eyes: Cognitive and Applied Aspects of Eye Movements (pp. 3-26).
  92. Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20-25.
  93. Groos, K. (1896). “Die Spiele der Thiere.”. Jena: Fischer.
  94. Haenny, P. E., Maunsell, J. H., & Schiller, P. H. (1988). State dependent activity in monkey visual cortex. Experimental Brain Research, 69, 245-259.
  95. Hamker, F. H. (2003). The reentry hypothesis: linking eye movements to visual perception. Journal of Vision, 11, 808-816.
  96. Hamker, F. H. (2004). A dynamic model of how feature cues guide spatial attention. Vision Research, 44, 501-521.
  97. Hamker, F. H. (2005). The emergence of attention by population-based inference and its role in distributed processing and cognitive control of vision. Journal of Computer Vision and Image Understanding, 100(1-2), 64-106.
  98. Han, S. H., & Kim, M. (2004). Visual search does not remain efficient when executive working memory is working. Psychological Science, 15(9), 623-628.
  99. Handy, T. C., Kingstone, A., & Mangun, G. R. (1996). Spatial distribution of visual attention : Perceptual sensitivity and response latency. Perception & Psychophysics, 58(4), 613-627.
  100. Harnad, S. (1990). The symbol grounding problem. Physica D, 42, 335-346.
  101. Hawkins, H. L., Hillyard, S. A., Luck, S. J., Mouloua, M., Downing, C. J., Woodward, D. P., et al. (1990). Visual attention modulates signal detectability. Journal of Experimental Psychology: Human Perception and Performance, 16(4), 802-811.
  102. Hickey, C., McDonald, J., & Theeuwes, J. (2006). Electrophysiological evidence of the capture of visual attention. Journal of cognitive neuroscience, 18, 604-613.
  103. Hillyard, S. a., Vogel, E. K., & Luck, S. J. (1998). Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 353(1373), 1257-70. doi: 10.1098/rstb.1998.0281.
  104. Hodsoll, J., & Humphreys, G. W. (2001). Driving attention with the top down : The relative contribution of target templates to the linear separability effect in the size dimension. Percedption and Psychophysics, 63(5), 918-926.
  105. Hommel, B., Pratt, J., Colzato, L., & Godijn, R. (2001). Symbolic control of visual attention. Psychological Science, 12(5), 360-365.
  106. Hopfinger, J. B., & West, V. M. (2006). Interactions between endogenous and exogenous attention on cortical visual processing. Neuroimage, 31, 774-789.
  107. Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurons in the cat's striate cortex. Journal of Physiology, 148, 574-591.
  108. Ignashchenkova, A., Dicke, P. W., Haarmeier, T., & Thier, P. (2004). Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Nature neuroscience, 7(1), 56-64. doi: 10.1038/nn1169.
  109. Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40, 1489-1506.
  110. Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 194-203.
  111. Itti, L., Rees, G., & Tsotsos, J. K. (2005). Neurobiology of attention. San Diego, CA: Elsevier.
  112. James, W. (1890). The principles of psychology. Retrieved from http://psychclassics.asu.edu/James/Principles/index.htm.
  113. Jones, H., Wang, W., & Sillito, A. (2002). Spatial organization and magnitude of orientation contrast interactions in primate V1. Journal of neurophysiology, 88, 2796 -2808.
  114. Jonides, J. (1981). Voluntary versus automatic control over the mind's eye's movement. In J. B. Long & A. D. Baddeley, Attention & performance IX (pp. 187-203). Hillsdale NJ: Erlbaum.
  115. Jonides, J., & Yantis, S. (1988). Uniqueness of abrupt visual onset in capturing attention. Perception & psychophysics, 43(4), 346-54.
  116. Kahneman, D. (1973). Attention and effort. Englewood Cliffs, N.J.: Prentice Hall, Inc.
  117. Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132(1), 47-70.
  118. Kastner, S., & Pinsk, M. A. (2004). Visual attention as a multilevel selection process. Behavioral Neuroscience, 4(4), 483-500.
  119. Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23, 315-341.
  120. Kastner, S., Nothdurft, H., & Pigarev, I. N. (1997). Neuronal correlates of pop-out in cat striate cortex. Vision Research, 37, 371-376.
  121. Kastner, S., Pinsk, M. a., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22(4), 751-61.
  122. Kiesel, A., Miller, J., & Ulrich, R. (2007). Systematic biases and Type I error accumulation in tests of the race model inequality. Behavior Research Methods, 39(3), 539-551.
  123. Kim, Y., Gitelman, D. R., Nobre, A. C., Parrish, T. B., Labar, K. S., Mesulam, M. M., et al. (1999). The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. NeuroImage, 9, 269-277.
  124. Kimberg, D. Y., & Farah, M. J. (1993). A Unified Account of Cognitive Impairments Following Frontal Lobe Damage : The Role of Working Memory in Complex, Organized Behavior. Journal of Experimental Psychology: General, 122(4), 411-428.
  125. Kimberg, D. Y., & Farah, M. J. (2000). Is there an inhibitory module in the prefrontal cortex? Working memory and the mechanisms underlying cognitive control. In S. Monsell & J. Driver, Control of cognitive processes: attention and performance XVIII (pp. 739-751). Cambridge: MA: the MIT Press.
  126. Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4, 138-147.
  127. Klein, R. M., & Macinnes, W. J. (1999). Inhibition of return is a foraging facilitatorin visual search. Psychological Science, 10(4), 346-352.
  128. Klein, R. M., & Shore, D. I. (2000). Relationships among modes of visual orienting. In S. Monsell & J. Driver, Attention And Performance XVIII (pp. 195-208). Cambridge: MIT Press.
  129. Knierim, J. J., & Van Essen, D. C. (1992). Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of Neurophysiology, 67(4), 961-980.
  130. Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: toward the underlying neural circuitry. Human Neurobiology, 4, 219-227.
  131. Koechlin, E., Basso, G., Pietrini, P., Panzer, S., & Grafman, J. (1999). The role of the anterior prefrontal cortex in human cognition. Nature, 399(6732), 148-51. doi: 10.1038/20178.
  132. Koene, A. R., & Zhaoping, L. (2007). Feature-specific interactions in salience from combined feature contrasts: Evidence for a bottom-up saliency map in V1. Journal of Vision, 7(7:6), 71-14.
  133. Kok, A. (1999). Varieties of inhibition: manifestations in cognition, event-related potentials and aging. Acta Psychologica, 101(2-3), 129–158. Elsevier.
  134. Konishi, S., Nakajima, K., Uchida, I., Kikyo, H., Kameyama, M., Miyashita, Y., et al. (1999). Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain, 122, 981-91.
  135. Kustov, A. A., & Robinson, D. L. (1996). Shared neural control of attentional shifts and eye movements. Nature, 384(6604), 74-7. doi: 10.1038/384074a0.
  136. Kusunoki, M., Gottlieb, J., & Goldberg, M. E. (2000). The lateral intraparietal area as a salience map: the representation of abrupt onset, stimulus motion, and task relevance. Vision Research, 40, 1459-1468.
  137. LaBerge, D., Auclair, L., & Siéroff, E. (2000). Preparatory attention: experiment and theory. Consciousness and cognition, 9(3), 396-434. doi: 10.1006/ccog.1999.0429.
  138. Labar, K. S., Gitelman, D. R., Parrish, T. B., & Mesulam, M. (1999). Neuroanatomic overlap of working memory and spatial attention networks: a functional MRI comparison within subjects. NeuroImage, 10(6), 695-704. doi: 10.1006/nimg.1999.0503.
  139. Lamme, V. A., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23(11), 571-579.
  140. Lamy, D. (2010). Reevaluating the disengagement hypothesis. Acta psychologica, 9-11. doi: 10.1016/j.actpsy.2010.05.009.
  141. Lamy, D., & Tsal, Y. (2003). Does a salient distractor capture attention early in processing ? Psychonomic Bulletin & Review, 10(3), 621-629.
  142. Lamy, D., Leber, A. B., & Egeth, H. E. (2004). Effects of Task Relevance and Stimulus-Driven Salience in Feature-Search Mode. Journal of Experimental Psychology: Human Perception and Performance, 30(6), 1019 -1031. doi: 10.1037/0096-1523.30.6.1019.
  143. Larzelere, R. E., & Mulaik, S. A. (1977). Single-Sample Tests for Many Correlations. Psychological Bulletin, 84(3), 557-569.
  144. Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 451-468.
  145. Lavie, N. (2005). Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9(2), 75-82.
  146. Lavie, N., & de Fockert, J. (2005). The role of working memory in attentional capture. Psychonomic Bulletin & Review, 12(4), 669-674.
  147. Lebedev, M. A., Messinger, A., Kralik, J. D., & Wise, S. P. (2004). Representation of attended versus remembered locations in prefrontal cortex. PLoS biology, 2(11), e365. doi: 10.1371/journal.pbio.0020365.
  148. Leber, A. B., & Egeth, H. E. (2006). It's under control: Top-down search strategies can override attentional capture. Psychonomic Bulletin & Review, 13(1), 132-138.
  149. Li, Z. (2002). A saliency map in. Trends in Cognitive Sciences, 6(1), 9-16.
  150. Ling, S., Liu, T., & Carrasco, M. (2009). How spatial and feature-based attention affect the gain and tuning of population responses. Vision Research, 49(10), 1194-1204. Elsevier Ltd. doi: 10.1016/j.visres.2008.05.025.
  151. Luck, S. J., & Hillyard, S. A. (1994). Spatial Filtering During Visual Search : Evidence From Human Electrophysiology. Journal of experimental psychology: Human Perception and performances, 20(5), 1000-1014.
  152. Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of neurophysiology, 77, 24-42.
  153. Ludwig, C. J., & Gilchrist, I. D. (2003). Goal-driven modulation of oculomotor capture. Perception and psychophysics, 65(8), 1243-1251.
  154. Macleod, C. M., Dodd, M. D., Sheard, E. D., Wilson, D. E., & Bibi, U. (2003). In Opposition to Inhibition. In B. H. Ross, The Psychology of Learning and Motivation, Vol. 43 (Vol. 7439, pp. 163-214). San Diego: Elsevier.
  155. Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory and Cognition, 22(6), 657-672.
  156. Mangun, G. R. (1995). Neural mechanisms of visual selective attention. Psychophysiology, 32(1), 4-18.
  157. Marois, R., & Ivanoff, J. (2005). Capacity limits of information processing in the brain. Trends in Cognitive Sciences, 9(6), 296-305.
  158. Maunsell, J. H., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in neurosciences, 29(6), 317-22. doi: 10.1016/j.tins.2006.04.001.
  159. Mazer, J. A., & Gallant, J. L. (2003). Goal-related activity in V4 during free viewing visual search. Evidence for a ventral stream visual salience map. Neuron, 40(6), 1241-50.
  160. McAdams, C. J., & Maunsell, J. H. (2000). Attention to Both Space and Feature Modulates Neuronal Responses in Macaque Area V4. Journal of Neurophysiology, 83(3), 1751-1755.
  161. McPeek, R. M., Han, J. H., & Keller, E. L. (2003). Competition between saccade goals in the superior colliculus produces saccade curvature. Journal of neurophysiology, 89(5), 2577-90. doi: 10.1152/jn.00657.2002.
  162. Mesulam, M. M. (1999). Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 354, 1325-1346.
  163. Michael, G., Boucart, M., Degreef, J., & Godefroy, O. (2001). The thalamus interrupts top-down attentional control for permitting exploratory shiftings to sensory signals. NeuroReport, 12(9), 2041-2048.
  164. Michael, G. A., Fernandez, D. N., & Vairet, A. (2007). Capture attentionnelle en vision : la pertinence, la saillance et la balance cortico-sous-corticale. In G. A. Michael, Neuroscience cognitive de l'attention visuelle (pp. 165-201). Marseille: Solal.
  165. Michael, G. A., Garcia, S., Fernandez, D. N., Sellal, F., & Boucart, M. (2006). The ventral premotor cortex (vPM) and resistance to interference. Behavioral Neuroscience, 120(2), 447-462.
  166. Michael, G. A., Kleitz, C., Sellal, F., Hirsch, E., & Marescaux, C. (2001). Controlling attentional priority by preventing changes in oculomotor programs: a job for the premotor cortex. Neuropsychologia, 39, 1112-1120.
  167. Miller, B. T., & D'Esposito, M. (2005). Searching for ‘‘ the Top ’’ in Top-Down Control. Neuron, 48, 535-538. doi: 10.1016/j.neuron.2005.11.002.
  168. Miller, E., & Cohen, J. (2003). An integrative theory of prefrontal cortex function. Neuroscience Research, 24, 167-202.
  169. Miller, J. (1982). Divided Attention: Evidence for Coactivation with Redundant Signals. Cognitive Psychology, 149, 247-279.
  170. Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: two cortical pathways. Trends In Neurosciences, 6, 414-417.
  171. Mitchell, J. P., Macrae, C. N., & Gilchrist, I. D. (2002). Working Memory and the Suppression of Reflexive Saccades. Journal of Cognitive Neuroscience, 14(1), 95- 103.
  172. Moore, T., Armstrong, K. M., & Fallah, M. (2003). Visuomotor origins of covert spatial attention. Neuron, 40, 671-683.
  173. Motter, B. C. (1994). Neural correlates of attentive selection for color or luminance in extrastriate area V4. The Journal of neuroscience : the official journal of the Society for Neuroscience, 14(4), 2178-89.
  174. Mozolic, J. L., Hugenschmidt, C. E., Peiffer, A. M., & Laurienti, P. J. (2008). Modality-specific selective attention attenuates multisensory integration. Experimental Brain Research, 184, 39-52. doi: 10.1007/s00221-007-1080-3.
  175. Muller, H. J., Reimann, B., & Krummenacher, J. (2003). Visual search for singleton feature targets across dimensions: Stimulus- and expectancy-driven effects in dimensional weighting. Journal of experimental psychology. Human perception and performance, 29(5), 1021-35. doi: 10.1037/0096-1523.29.5.1021.
  176. Munoz, D. P., & Fecteau, J. H. (2002). Vying for dominance: dynamic interactions control visual fixation and saccadic initiation in the superior colliculus. (J. Hyönä, D. P. Munoz, W. Heide, & R. Radach)Progress in Brain Research, 140, 3-19.
  177. Munoz, D. P., & Istvan, P. J. (1998). Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. Journal of Neurophysiology, 79, 1193-1209.
  178. Müller, H. J., & Krummenacher, J. (2006). Locus of dimension weighting : Preattentive or postselective ? Visual Cognition, 14(4/5/6/7/8), 490-513. doi: 10.1080/13506280500194154.
  179. Müller, H. J., & Rabbitt, P. M. (1989). Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15(2), 315-330.
  180. Müller, H. J., & von Mühlenen, A. (2000). Probing Distractor Inhibition in Visual Search : Inhibition of Return. Journal of experimental psychology: Human erception and performance, 26(5), 1591-1605. doi: 10.1037//0096-I523.26.5.1591.
  181. Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual search for singleton feature targets within and across feature dimensions. Perception and Psychophysics, 57(1), 1-17.
  182. Müller, H. J., Töllner, T., Zehetleitner, M., Geyer, T., Rangelov, D., Krummenacher, J., et al. (2010). Dimension-based attention modulates feed-forward visual processing - A reply to Theeuwes (2010). Acta psychologica. Elsevier B.V. doi: 10.1016/j.actpsy.2010.05.004.
  183. Müller, J. R., Philiastides, M. G., & Newsome, W. T. (2005). Microstimulation of the superior colliculus focuses attention without moving the eyes. Proceedings of the National Academy of Sciences of the United States of America, 102(3), 524-9. doi: 10.1073/pnas.0408311101.
  184. Navalpakkam, V., & Itti, L. (2005). Modeling the influence of task on attention. Vision Research, 45, 205-231.
  185. Neisser, U. (1967). Cognitive psychology. New-York: Appleton-C.
  186. Newell, A. (1973). You can't play 20 questions with nature and win: Projective comments on the papers of this symposium. In W. G. Chase, Visual information processing: proceedings (Academic P., pp. 283-308). New York.
  187. Nieuwenhuis, S., Broerse, A., Nielen, M. M., & de Jong, R. (2004). A goal activation approach to the study of executive function: An application to antisaccade tasks. Brain and Cognition, 56, 198-214.
  188. Nobre, A. C., Sebestyen, G. N., Gitelman, D. R., Mesulam, M. M., Frackowiak, R. S., Frith, C. D., et al. (1997). Functional localization of the system for visuospatial attention using positron emission tomography. Brain, 120, 515-33.
  189. Nothdurft, H. (1993). The role of features in preattentive vision: Comparison of orientation, motion and color cues. Vision Research, 33(14), 1937-1958.
  190. Nothdurft, H. (2000). Salience from feature contrast: additivity across dimensions. Vision Research, 40, 1183-1201.
  191. Nothdurft, H. (2006). Salience and target selection in visual search. Visual Cognition, 14, 514-542.
  192. Nothdurft, H. (2006). Salience-controlled visual search: Are the brightest and the least bright targets found by different processes? Visual Cognition, 13(6), 700-732. doi: 10.1080/13506280544000237.
  193. Nothdurft, H., Gallant, J. L., & Van Essen, D. C. (1999). Response modulation by texture surround in primate area V1: correlates of ‘popout’ under anesthesia. Visual Neuroscience, 16, 15-34.
  194. Ogawa, T., & Komatsu, H. (2004). Target selection in area V4 during a multidimensional visual search task. Journal of Neuroscience, 24(28), 6371-6382.
  195. Olivers, C. N., & Humphreys, G. W. (2002). When Visual Marking Meets the Attentional Blink: More Evidence for Top-Down , Limited-Capacity Inhibition. Journal of experimental psychology: human of perception and performance, 28(1), 22- 42. doi: 10.1037//0096-1523.28.1.22.
  196. Olivers, C., Humphreys, G., & Braithwaite, J. (2006). The preview search task: Evidence for visual marking. Visual Cognition, 14(4-8), 716-735. doi: 10.1080/13506280500194188.
  197. Parkhurst, D., Law, K., & Niebur, E. (2002). Modeling the role of salience in the allocation of overt visual attention. Vision Research, 42, 107-123.
  198. Pashler, H. E. (1998). The Psychology of Attention. Cambridge, MA: MIT Press.
  199. Paus, T. (1991). Two modes of central gaze fixation maintenance and oculomotor distractibility in schizophrenics. Schizophrenia Research, 5, 145-152.
  200. Peelen, M. V., Heslenfeld, D. J., & Theeuwes, J. (2004). Endogenous and exogenous attention shifts are mediated by the same large-scale neural network. NeuroImage, 22, 822-830.
  201. Pessoa, L., Kastner, S., & Ungerleider, L. G. (2003). Neuroimaging studies of attention: from modulation of sensory processing to top-down control. Journal of Neuroscience, 23, 3990-3998.
  202. Pierrot-deseilligny, C., Milea, D., & Muri, R. M. (2004). Eye movement control by the cerebral cortex. Current Opinion in Neurology, 17, 17-25.
  203. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3-25.
  204. Posner, M. I., & Cohen, Y. (1984). Components of Visual Orienting. In H. Bouma & D. G. Bouwhuis, Attention And Performance X (pp. 531-556). Hillsdale: NJ; Erlbaum.
  205. Posner, M. I., & Digirolamo, G. J. (2000). Cognitive Neuroscience : Origins and Promise. Psychological Bulletin, 126(6), 873-889. doi: 10.1037//0033-2909.126.6.873.
  206. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Reviews of Neuroscience, 13, 25-42.
  207. Posner, M. I., Cohen, Y., & Rafal, R. D. (1982). Neural systems control of spatial orienting. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 298(1089), 187-98.
  208. Posner, M. I., Pea, R., & Volpe, B. (1982). Cognitive-Neuroscience : Developments Toward a Science of Synthesis. In J. Mehler, E. C. Walker, & M. Garrett, Perspectives on mental representation: Experimental and theoretical studies of cognitive processes and capacities (Lawrence E., pp. 251-276). Hillsdale, Nexw Jerrsey.
  209. Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109, 160-174.
  210. Postle, B. R. (2006). Working memory as an emergent property of the mind and brain. Neuroscience, 139, 23-38.
  211. Prinzmetal, W., McCool, C., & Park, S. (2005). Attention : Reaction Time and Accuracy Reveal Different Mechanisms. Journal of Experimental Psychology: General, 134(1), 73-92. doi: 10.1037/0096-3445.134.1.73.
  212. Proulx, M. J., & Egeth, H. E. (2006). Biased competition and visual search: The role of luminance and size contrast. Psychological Research, 72, 106-113.
  213. Raab, D. (1962). Statistical facilitation of simple reaction times. Transactions of the New York Academy of Sciences, 24, 574-590.
  214. Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics. Psychological Bulletin, 86, 446-461.
  215. Rauschenberger, R. (2010). Reentrant processing in attentional guidance - Time to abandon old dichotomies. Acta psychologica, 12-14. doi: 10.1016/j.actpsy.2010.04.014.
  216. Reuter, B., & Kathmann, N. (2004). Using saccade tasks as a tool to analyze executive dysfunctions in schizophrenia. Acta Psychologica, 115, 255-269.
  217. Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing. Annual review of neuroscience, 27, 611-47. doi: 10.1146/annurev.neuro.26.041002.131039.
  218. Rizzolatti, G., & Craighero, L. (2010). Premotor theory of attention. Scholarpedia, 5(1), 6311. doi: 10.4249/scholarpedia.6311.
  219. Rizzolatti, G., Riggio, L., Dascola, I., & Umiltà, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25(1A), 31-40.
  220. Roberts, R. J., & Pennington, B. F. (1996). An integrative framework for examining prefrontal cognitive processes. Developmental neuropsychology, 12(1), 105-126.
  221. Roberts, R. J., Hager, L. D., & Heron, C. (1994). Prefrental Cognitive Processes: Working Memory and Inhibition in the Antisaccade Task. Journal of Experimental Psychology: Human Perception and Performance, 123(4), 374-393.
  222. Robinson, D. L., & Petersen, S. E. (1992). The pulvinar and visual salience. Trends in Neurosciences, 15(4), 127-132. doi: 10.1016/0166-2236(92)90354-B.
  223. Rolls, E. T. (2008). Memory, Attention, and Decision-Making: A unifying computational neuroscience approach. New York: Oxford University Press.
  224. Rosen, A. C., Rao, S. M., Caffarra, P., Scaglioni, A., Bobholz, J. A., Woodley, S. J., et al. (1999). Neural basis of endogenous and exogenous spatial orienting. A functional MRI study. Journal of cognitive neuroscience, 11(2), 135-52.
  225. Roskies, A. L. (1999). The binding problem. Neuron, 24, 7-9.
  226. Ruff, C. C., Blankenburg, F., Bjoertomt, O., Bestmann, S., Freeman, E., Haynes, J., et al. (2006). Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Current biology, 16(15), 1479-88. doi: 10.1016/j.cub.2006.06.057.
  227. Ruz, M., & Lupiáñez, J. (2002). A review on attentional capture: On its automaticity and sensitivity to endogenous control. Psicológica, 23, 283-309.
  228. Sala, J. B., & Courtney, S. M. (2007). Binding of what and where during working memory maintenance. Cortex, 43, 5-21.
  229. Schall, J. D. (2004). On the role of frontal eye field in guiding attention and saccades. Vision Research, 44, 1453-1467.
  230. Schenkluhn, B., Ruff, C. C., Heinen, K., & Chambers, C. D. (2008). Parietal Stimulation Decouples Spatial and Feature-Based Attention. Current Opinion in Neurobiology, 28(44), 11106 -11110. doi: 10.1523/JNEUROSCI.3591-08.2008.
  231. Schoenfeld, M. A., Hopf, J., Martinez, A., Mai, H. M., Sattler, C., Gasde, A., et al. (2007). Spatio-temporal analysis of feature-based attention. Cerebral cortex, 17(10), 2468-77. doi: 10.1093/cercor/bhl154.
  232. Schwartz, S., Vuilleumier, P., Hutton, C., Maravita, A., Dolan, R. J., Driver, J., et al.(2005). Attentional load and sensory competition in human vision: Modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field. Cerebral Cortex, 15, 770-786.
  233. Serences, J. T., & Boynton, G. M. (2007). Feature-Based Attentional Modulations in the Absence of Direct Visual Stimulation. Neuron, 55, 301-312. doi: 10.1016/j.neuron.2007.06.015.
  234. Serences, J. T., & Boynton, G. M. (2007). Feature-based attentional modulations in the absence of direct visual stimulation. Neuron, 55(2), 301-12. doi: 10.1016/j.neuron.2007.06.015.
  235. Serences, J. T., Shomstein, S., Leber, A., Golay, X., Egeth, H., Yantis, S., et al.(2005). Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychological science, 16(2), 114-122.
  236. Shipp, S. (2004). The brain circuitry of attention. Trends in Cognitive Sciences, 8, 223-230.
  237. Siéroff, E., & Auclair, L. (2007). L'attention préparatoire. In G. A. Michael, Neuroscience cognitive de l'attention visuelle (pp. 83-112). Marseille: Solal.
  238. Soto, D., Hodsoll, J., Rotshtein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in cognitive sciences, 12(9), 342-8. doi: 10.1016/j.tics.2008.05.007.
  239. Sparks, D. (1999). Conceptual issues related to the role of the superior colliculus in the control of gaze. Current Opinion in Neurobiology, 9, 698-707.
  240. Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs: General and Applied, 74(11), 1-29.
  241. Stevens, S. S., & Galanter, E. H. (1957). Ratio scales and perceptual category scales for a dozen perceptual continua. Journal of Experimental Psychology, 54(6), 377-411.
  242. Stinear, C. M., Coxon, J. P., & Byblow, W. D. (2009). Primary motor cortex and movement prevention : Where Stop meets Go. Biobehavioral Reviews, 33, 662-673. doi: 10.1016/j.neubiorev.2008.08.013.
  243. Stroop, J. R. (1935). Studies of Interference in Serial Verbal Reactions. Journal of Experimental Psychology: General, 121(1), 15-23.
  244. Sutherland, S. (1998). Book Reviews. Nature, 392(26), 350. doi: doi:10.1038/32819.
  245. Tanaka, K. (1996). Inferotemporal cortex and object vision. Annual review of neuroscience, 19, 109-39. doi: 10.1146/annurev.ne.19.030196.000545.
  246. Theeuwes, J. (1991). Exogenous and endogenous control of attention: the effect of visual onsets and offsets. Perception and Psychophysics, 22, 1261-1278.
  247. Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception and Psychophysics, 51(6), 599-606.
  248. Theeuwes, J. (1993). Visual selective attention: A theoretical analysis. Acta Psychologica, 83, 93-154.
  249. Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture. Psychonomic Bulletin & Review, 11, 65-70.
  250. Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta psychologica. Elsevier B.V. doi: 10.1016/j.actpsy.2010.02.006.
  251. Theeuwes, J. (2010). Top-down and bottom-up control of visual selection: Reply to commentaries. Acta psychologica. doi: 10.1016/j.actpsy.2010.07.006.
  252. Theeuwes, J., & Godijn, R. (2002). Irrelevant singletons capture attention: Evidence from inhibition of return. Perception & Psychophysics, 64, 764-770.
  253. Theeuwes, J., & Van Der Burg, E. (2007). The role of cueing in attentional capture. Visual Cognition, 16(2), 232-247. doi: 10.1080/13506280701462525.
  254. Theeuwes, J., & Van Der Burg, E. (2007). The role of spatial and nonspatial information in visual selection. Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1335-1351.
  255. Theeuwes, J., Kramer, A. F., Hahn, S., & Irwin, D. E. (1998). Our Eyes do Not Always Go Where we Want Them to Go: Capture of the Eyes by New Objects. Psychological Science, 9(5), 379-385. doi: 10.1111/1467-9280.00071.
  256. Theeuwes, J., Reimann, B., & Mortier, K. (2006). Visual search for featural singletons: No top-down modulation, only bottom-up priming. Visual Cognition, 14, 466-489.
  257. Thompson, K. G., Bichot, N. P., & Sato, T. R. (2005). Frontal Eye Field Activity Before Visual Search Errors Reveals the Integration of Bottom-Up and Top-Down Salience. Journal of Neurophysiology, 93, 337-351. doi: 10.1152/jn.00330.2004.
  258. Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520-522.
  259. Torralbo, A., & Beck, D. M. (2008). Perceptual-load-induced selection as a result of local competitive interactions in visual cortex. Psychological Science, 19, 1045-1050.
  260. Townsend, J. T. (1972). Some results concerning the identifiability of parallel and serial processes. British journal of mathematical and statistical psychology, 25, 168-199.
  261. Trappenberg, T. P., Dorris, M. C., Munoz, D. P., & Klein, R. M. (2001). A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. Journal of Cognitive Neuroscience, 13(2), 256-271.
  262. Treisman, A. M., & Gelade, G. (1980). A Feature-Integration of Attention. Cognitive Psychology, 12, 97-136.
  263. Treisman, A. M., & Gormican, S. (1988). Feature analysis in early vision: Evidence from search asymmetries. Psychological Review, 95, 15-48.
  264. Treisman, A. M., Souther, J., Columbia, B., & Scientific, N. (1985). Journal of Experimental Psychology : General Processing of Separable Features. Search, 114(3), 285-310.
  265. Treue, S. (2004). Perceptual enhancement of contrast by attention. Trends in cognitive sciences, 8(10), 435-7. doi: 10.1016/j.tics.2004.08.001.
  266. Treue, S., & Martinez-trujillo, J. C. (1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399, 575-579.
  267. Treue, S., & Maunsell, J. H. (1996). Attentional modulation of visual motion processing in cortical areasMT and MST. Nature, 382, 539–541.
  268. Tsotsos, J. K. (1990). Analyzing vision at the complexity level. Behavioral And Brain Sciences, 13, 423-469.
  269. Tsotsos, J. K., Itti, L., & Rees, G. (2005). A brief and selective history of attention. In L. Itti, G. Rees, & J. K. Tsotsos, Neurobiology of attention. San Diego, CA: Elsevier.
  270. Turatto, M., Galfano, G., Gardini, S., & Mascetti, G. G. (2004). Stimulus-driven attentional capture : An empirical comparison of display-size and distance methods. The Quarterly Journal Of Experimental Psychology, 57A(2), 297-324. doi: 10.1080/02724980343000242.
  271. Ulrich, R., Miller, J., & Schröter, H. (2007). Testing the race model inequality: An algorithm and computer programs. Behavior Research Methods, 39(2), 291-302.
  272. Unsworth, N., Schrock, J. C., & Engle, R. W. (2004). Working Memory Capacity and the Antisaccade Task: Individual Differences in Voluntary Saccade Control. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(6), 1302-1321. doi: 10.1037/0278-7393.30.6.1302.
  273. Van Der Stigchel, S., & Theeuwes, J. (2005). The influence of attending to multiple locations on eye movements. Vision Research, 45, 1921-1927. doi: 10.1016/j.visres.2005.02.002.
  274. Vanrullen, R. (2003). Visual saliency and spike timing in the ventral visual pathway. Journal of Physiology, 97, 365-377. doi: 10.1016/j.jphysparis.2003.09.010.
  275. Vanrullen, R., Reddy, L., & Koch, C. (2004). Visual Search and Dual Tasks Reveal Two Distinct Attentional Resources. Journal of Cognitive Neuroscience, 16(1), 4-14.
  276. Vecera, S. P., & Luck, S. J. (2002). Attention. Encyclopedia of the Human Brain.
  277. Versace, R., Labeye, E., Badard, G., & Rose, M. (2008). The contents of long-term memory and the emergence of knowledge. European Journal of Cognitive Psychology, 21(4), 522-560. doi: 10.1080/09541440801951844.
  278. Vidyasagar, T. R. (1999). A neuronal model of attentional spotlight: parietal guiding the temporal. Brain Research Reviews, 30, 66-76.
  279. Von Wright, J. M. (1968). Selection in visual immediate memory. Quarterly Journal of Experimental Psychology, 20, 62-68.
  280. Von Wright, J. M. (1970). On selection in visual immediate memory. Acta psychologica, 33, 280-92.
  281. Watson, D. G., & Humphreys, G. W. (1997). Visual marking: Prioritizing selection for new objects by top-down attentional inhibition of old objects. Psychological Review, 104(1), 90-122.
  282. Wolfe, J. M. (1994). Guided Search 2.0 A revised model of visual search. Psychonomic Bulletin and Review, 1(2), 202-238.
  283. Wolfe, J. M. (1998). What can a million trials tell us about visual search? Psychological science, 9(1), 33-39.
  284. Wolfe, J. M. (2007). Guided search 4.0: Current progress with a model of visual search. In W. Gray, Integrated Models of Cognitive Systems (pp. 99-119). New York: Oxford.
  285. Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they do it. Nature Reviews Neuroscience, 5(6), 495-501.
  286. Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided search: an alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15(3), 419-433.
  287. Woodman, G. F., Luck, S. J., & Schall, J. D. (2007). The role of working memory representations in the control of attention. Cerebral cortex, 17, i118-24. doi: 10.1093/cercor/bhm065.
  288. Woolgar, A., Thompson, R., Bor, D., & Duncan, J. (2010). Multi-voxel coding of stimuli, rules, and responses in human frontoparietal cortex. NeuroImage. Elsevier Inc. doi: 10.1016/j.neuroimage.2010.04.035.
  289. Yantis, S. (1998). Control of Visual Attention. In H. Pashler, Attention (pp. 223-256). London: Psychology Press.
  290. Yantis, S., & Egeth, H. E. (1999). On the distinction between visual salience and stimulus-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 25(3), 661-676.
  291. Yantis, S., & Hillstrom, A. P. (1994). Stimulus-driven attentional capture: Evidence from equiluminant visual objects. Journal of Experimental Psychology: Human Perception and Performance, 20(1), 95-107.
  292. Yantis, S., & Johnson, D. N. (1990). Mechanisms of Attentional Priority. Perception, 16(4), 812-825.
  293. Yantis, S., & Jonides, J. (1984). Abrupt visual onset and selective attention: evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 601-621.
  294. Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention-Voluntary versus automatic allocation. Journal of Experimental Psychology: Human Perception and Performance, 16(1), 121-134.
  295. Zhang, W., & Luck, S. J. (2009). Feature-based attention modulates feedforward visual processing. Nature Neuroscience, 12(1), 24-25. doi: 10.1038/nn.2223.