
2 Text-Independent Speaker Verification
Systems

Speaker verification systems try to verify the identity of a claimed speaker

given a recorded sentence. They are often used to secure personal information

as a replacement for password or personal identification number (PIN) code

based secure systems. These systems are also increasingly often used to se-

cure personal information for mobile phone based applications. Furthermore,

text-independent versions of speaker verification systems are the most used for

their simplicity, as they do not require complex speech recognition modules.

The most common approach using machine learning algorithms are based on

Gaussian Mixture Models (GMMs) (Reynolds et al., 2000), which do not take

into account any temporal information. They have been intensively used thanks

to their good performance, especially with the use of the Maximum A Poste-

riori (MAP) (Gauvain and Lee, 1994) adaptation algorithm. This approach is

based on the density estimation of an impostor data distribution, followed by

its adaptation to a specific client data set.

Feature extraction is also an important step in the speaker verification pro-

cedure. It basically transforms a mono dimensional speech signal into a se-

quence of multi-dimensional feature vectors. Largely inspired from the speech

recognition domain, this is also aimed to discard non speaker frames, such as

silence or noise, and keep as much as possible the speaker specific information.

Even if GMMs yield good performance, they try to estimate data density

instead of solving the final task: find the decision boundary between a specific

client and all possible impostors. Several researchers proposed discriminant

REF D. A. Reynolds, T. F. Quatieri, and R. B. Dunn. Speaker verification using adapted

gaussian mixture models. Digital Signal Processing, 10(1–3), 2000.

REF J. L. Gauvain and C.-H. Lee. Maximum a posteriori estimation for multivariate gaus-

sian mixture observation of markov chains. In IEEE Transactions on Speech Audio Process-

ing, volume 2, pages 291–298, April 1994.
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approaches but the most interesting one, from our point of view, is based on

Support Vector Machines (SVMs). SVMs yield similar or even better per-

formance than GMMs on several text-independent speaker verification tasks.

One of these systems, based on an explicit polynomial expansion proposed

by Campbell (2002) has obtained good results during the NIST 2003 evalua-

tion (Campbell et al., 2005). We will retain this approach as a reference system

with respect to our new SVM based algorithms.

The outline of this chapter goes as follows. In Section 2.1, we present the

commonly used machine learning algorithms in text-independent speaker veri-

fication systems. In Section 2.2, a GMM based system, the most well-known,

is presented. Section 2.3 is dedicated to the feature extraction procedure in-

cluding a description of a speech/silence detector algorithm. In Section 2.4

the score normalization procedure is given to make scores robust to unmatched

recording conditions. Finally, the SVM based system proposed by Campbell

(2002) is described in Section 2.5.

2.1 Machine Learning Tools

Before defining the speaker verification problem and describing the state-of-

the-art models, let us define some machine learning algorithms used in speaker

verification.

Diagonal Covariance Gaussian Mixture Models

This is probably the most used algorithm to estimate a data density. Given a

set of frames X = {x1, ..,xt, ..,xT }, Gaussian Mixture Models can be defined

as follows:

P (X|Θ) =
∏
t

Ng∑
g=1

wg · N (xt;µg,σg) (2.1)

with

N (xt;µg,σg) =
1√

2π σ2
g

exp−
(xt − µg)2

2 σ2
g

(2.2)

REF W.M. Campbell, J.P. Campbell, D.A. Reynolds, E. Singer, and P.A. Torres-

Carrasquillo. Support vector machines for speaker and language recognition. Computer

Speech and Language, 2005.

REF W.M. Campbell. Generalized linear discriminant sequence kernels for speaker recogni-

tion. In Proc IEEE International Conference on Audio Speech and Signal Processing, pages

161–164, 2002.
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where Ng is the number of Gaussians and Θ = {wg,µg,σg}
Ng

g=1 are respectively

the weight, the mean vector and the standard deviation vector of the gth Gaus-

sian of the mixture. Each off-diagonal element of the covariance matrix is set

to zero, which is usually the case in speaker verification systems. Furthermore,

all weights are positive and sum to one.

GMMs are generally trained using an iterative Expectation Maximization

(EM) algorithm (Dempster et al., 1977) by Maximizing the Likelihood (ML)

defined as follows:

Θ̂ = arg max
Θ

P (X|Θ). (2.3)

Alternatively, a GMM can be trained using a Maximum A Posteriori (MAP)

criterion (Gauvain and Lee, 1994). This algorithm has the advantage to put

some prior on the parameter distribution. It can be defined as follows:

Θ̂ = arg max
Θ

P (Θ|X) = arg max
Θ

P (X|Θ)P (Θ). (2.4)

An implementation of MAP training for client model adaptation consists

of using a global parameter to tune the relative importance of the prior dis-

tribution which is in this case represented by the generic model corresponding

parameters estimated on a large dataset. The main idea of MAP adaptation is

to force the adapted model parameters to be close to the prior generic model.

The equations for adaptation of the parameters are:

ŵg = λwg + (1− λ)
T∑
t=1

P (g|xt) (2.5)

µ̂g = λµg + (1− λ)
∑T
t=1 P (g|xt)xt∑T
t=1 P (g|xt)

(2.6)

σ̂2
g = λ

(
σ2
g + µgµ

′

g

)
+ (1− λ)

∑T
t=1 P (g|xt)xtx

′

t∑′

t=1 P (g|xt)
− µ̂gµ̂

′

g (2.7)

where ŵg, µ̂g and σ̂g are respectively the new weight, mean and covariance

matrix of the gth Gaussian, wg, µg and σg are the corresponding parameters in

the generic model, P (g|xt) is the posterior probability of the gth Gaussian (from

the client model at the previous iteration), λ ∈ [0, 1] is the adaptation factor

REF A. P. Dempster, N. M. Laird, and D.B. Rubin. Maximum likelihood from incomplete

data via the em algorithm. Journal of the Royal Statistical Society, 1(39):1–38, 1977.

REF J. L. Gauvain and C.-H. Lee. Maximum a posteriori estimation for multivariate gaus-

sian mixture observation of markov chains. In IEEE Transactions on Speech Audio Process-

ing, volume 2, pages 291–298, April 1994.
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chosen empirically on a separate validation set and v
′
denotes the transpose of

vector v.

Note that in Equation (2.5) the new mean is simply a weighted sum of the

prior mean and new statistics; (1− λ) can hence be interpreted as the amount

of faith we have in the new statistics.

Often used as density estimator or clustering algorithm, GMMs are wildly

used in speaker verification. As we will see later, some modifications have nev-

ertheless been applied to GMMs in order to reach state-of-the-art performances

in speaker verification.

Support Vector Machines

Support Vector Machines (SVMs), as proposed by Vapnik (2000), are more

and more often used in machine learning applications such as text classifi-

cation (Joachims, 2002) and vision (Pontil and Verri, 1998). They have also

been used successfully for regression (Kwok, 1998) and multi-class classification

problems (Paugam-Moisy et al., 2000). In the context of two-class classification

problems, the underlying decision function is:

fΘ(x) = b+ w · Φ(x) (2.8)

where x is the current example, Θ = {b,w} are the model parameters and

Φ() is an “a priori” chosen function that maps the input data into some high

dimensional space.

Solving the SVM problem is equivalent to minimizing the following criterion:

(w∗, b∗) = arg min
(w,b)

‖ w ‖2

2
+ C

LT r∑
l=1

ξl (2.9)

under the constraints:

yl(wφ(xl) + b) ≥ 1− ξl ∀l (2.10)

REF V. N. Vapnik. The nature of statistical learning theory. Springer, second edition, 2000.

REF T. Joachims. Learning to Classify Text using Support Vector Machines. Kluwer Aca-

demic Publishers, Dordrecht, NL, 2002.

REF M. Pontil and A. Verri. Support vector machines for 3-d object recognition. IEEE

Transaction PAMI, 20:637–646, 1998.

REF J. T.-Y. Kwok. Support vector mixture for classification and regression problems. In

14th International Conf. on Pattern Recognition, 1998.

REF H Paugam-Moisy, A. Elisseeff, and Y. Guermeur. Generalization performance of mul-

ticlass discriminant models. In Int. Joint Conf. on Neural Networks (IJCNN), 2000.
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ξl ≥ 0 ∀l (2.11)

where LTr is the number of training examples, yl is the target class label in

{−1, 1} corresponding to input vector xl, C is a parameter that trades off the

minimization of classification errors (represented by ξl) and the maximization

of the margin (represented by 2
‖w‖ ), known to possess very good generalization

properties. Maximizing the margin is very important in the context of speaker

verification, since in most cases very few positive examples are available, and

the problem is often easily separable.

It can be shown that solving (2.9) enables the decision function to be ex-

pressed as a hyperplane defined by a linear combination of training examples

in the feature space Φ(). We can thus express (2.8) using the dual formulation

as:

fΘ(x) = b+
LT r∑
l=1

αlylΦ(xl) · Φ(x). (2.12)

We call support vector a training example for which αl 6= 0. As Φ() only

appears in dot products, we can replace them by a kernel function as follows:

fΘ(x) = b+
LT r∑
l=1

αlylk(xl,x). (2.13)

This so-called “kernel trick” helps to reduce the computational time and

also permits to project xl into potentially infinite dimensional feature spaces

without the need to compute anything in that space. The two most well known

kernels are the Radial Basis Function (RBF) and the polynomial kernels. The

former can be defined as:

k(xi,xj) = exp
(
−||xi − xj ||2

σ2

)
(2.14)

where σ is a hyper-parameter than can be used to tune the capacity of

the model, which is a formal measure of the complexity of the set of functions

spanned by the SVM (Vapnik, 2000). The polynomial kernel can be defined

as:

k(xi,xj) = (axi · xj + b)p (2.15)

where p, b, a are hyper-parameters that control the capacity.

REF V. N. Vapnik. The nature of statistical learning theory. Springer, second edition, 2000.
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The difficulty to use SVMs for speaker verification is related to the nature

of the data: they are variable length sequences. We will see in Chapter 5 which

solution can be proposed in order to modify SVMs to accept sequences as input.

2.2 GMM Based System

Given a sentence X pronounced by a hypothesized speaker Si, the aim of a

text-independent speaker verification system is to decide whether X has been

pronounced by Si or not. The testing hypothesis is based on two alternatives:

• H0: X has been pronounced by Si,

• H1: X has not been pronounced by Si.

Using the Bayes decision rule, we obtain the likelihood ratio as follows:

p(X|H0)
p(X|H1)

≥ ∆, acceptH0 (2.16)

where p(X|H0) is the probability density function of the observed speech seg-

ment X given the hypothesis H0, p(X|H1) is the probability density function

of the observed speech segment X given the hypothesis H1 and ∆ the decision

threshold.

These two densities are most often estimated by two Gaussian Mixture

Models with diagonal covariances. The model representing H0 is called client

model. H1, the model representing the hypothesis that the sentence X has

been pronounced by an impostor, is called world model when it is common to all

clients. Note that this model is also often referred to as Universal Background

Model (UBM) in the literature. This transforms (2.16) as follows:

∑
t

log

∑Ng

g=1 wg · N (xt;µg,σg)∑N̄g

g=1 w̄g · N (xt; µ̄g, σ̄g)
> log ∆ (2.17)

where xt is the tth frame of X, Ng is the number of Gaussians of the client

model, N̄g is the number of Gaussians of the world model, Θ+ = {µg,σg, wg}
are the GMM parameters for the client model and Θ− = {µ̄g, σ̄g, w̄g} are the

GMM parameters for the world model.

In the context of GMM based speaker verification systems, ML is normally

used to train the world model and MAP adaptation is used to train the client

model (usually only the mean parameters are modified, weights and standard

deviation are the same as for the world model) and broadly translates into forc-
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ing Θ+ to be near Θ− as the latter are assumed to be better estimated than the

former. See for instance (Reynolds et al., 2000) for a practical implementation.

Empirically some constraints have been added to the state-of-the-art. They

can be seen somehow as “tricks” or “hacks” in the sense that it is difficult

to justify their use other than empirically. They cannot be interpreted as

regularization factors or generalization control parameters. There are basically

three such “tricks” in baseline systems.

As we will see in more details in Chapter 5, the log likelihood ration (LLR)

defined in (2.18) is normalized by the length of the sequence by adding empir-

ically a normalization factor 1/T . Removing this factor would increase dras-

tically the final error of the system and thus seems to be crucial. This factor

transform (2.17) as follows:

llr =
1
T

∑
t

log

∑Ng

g=1 wg · N (xt;µg,σg)∑N̄g

g=1 w̄g · N (xt; µ̄g, σ̄g)
> log ∆. (2.18)

During the estimation of the world model, the variances are constrained to

a given minimum. Several methods are used for that purpose, but in our case

the minimum is fixed to a given percentage of the the global variance of the

data. Since a typical value for the variance flooring is between 10% to 60%

of the global variance of the data for each Gaussian, it cannot be considered

only as a regularization parameter to avoid numerical problem during the EM

training. The estimated distribution is thus forced to be flatten, which is in

contradiction with the density estimation hypothesis, but nevertheless gives

very good performance.

Finally, the use of the MAP adaptation method is often justified by the fact

that very few training examples are available for each client. Unfortunately,

this justification is contradicted by the fact that MAP adaptation is still better

than ML even when plenty of client training data is available, such as in the

extended task of the NIST contest. As described in Chapter 5, our explanation

is related to the fact that the “a priori” model used to adapt the client model

is the same than the one used as normalization model in the decision function.

Figure 2.1 shows an overview of a state-of-the-art GMM based system.

2.3 Feature Extraction

The feature extraction step transforms a recorded speech signal into a set of

feature vectors. The resulting data representation is more suitable for statistical

REF D. A. Reynolds, T. F. Quatieri, and R. B. Dunn. Speaker verification using adapted

gaussian mixture models. Digital Signal Processing, 10(1–3), 2000.
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Figure 2.1. A summary of a state-of-the-art GMM based system.

models but probably also for discriminant models.

Inspired from the speech recognition domain, most choices of feature ex-

traction parameters come from the last 10 years of experiments, done with

HMMs or GMMs. Even if the parameters of the feature extraction procedure

have been selected for statistical models, they can (and will) be also used on

discriminant models, for simplicity reasons.

While, in this thesis, we refer to X as the sentence pronounced by the

speaker, this is in fact a set of feature vectors obtained by the transformation

described in the following.

Cepstral Parameters

In Figure 2.2 the feature extraction procedure is sketched. The aim is to convert

a raw speech signal into a set of Cepstral Vectors. First, the speech signal is

pre-emphasized. A filter is used to enhance the high frequency of the spectrum

as follows:

xp(t) = x(t)− a · x(t− 1). (2.19)
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Values of a are generally between 0.95 and 0.98. As we would like apply

a Fast Fourier Transform (FFT), the signal must be stationary. Thus we

make the hypothesis that the signal is short-term stationary. We use a sub-

part of the signal by applying a sliding window. The length of this window is

usually between 20 and 30 milliseconds. To smooth the windowing procedure,

we overlap the window every 10 milliseconds typically. A vector computed

for a given window will be called frame. As the FFT is sensible to side effects,

Hamming window is preferred to rectangular window to smooth the transitions.

The FFT is computed using typically 512 points and only the real part of it is

retained. The resulting spectrum is composed of 256 points.

In order to reduce the size of the spectrum, it is multiplied by a filter

bank. This is a series of band-pass filters, usually triangular. The center

frequency of each filter is linearly distributed over the frequency scale. Some

authors (see for instance Reynolds and Rose (1995)) use a Mel scale which

corresponds to the auditory scale . In our case we chose 24 triangular filter-

banks linearly distributed. To obtain the Spectral coefficients, we take the log

of the spectral envelope and multiply each coefficient by 20. Finally a Discrete

Cosine Transform DCT is applied as follows:

cn =
Nsp∑
i=1

Ui cos
[
n(i− 1

2
)
π

Nsp

]
, n = 1, 2, ..., Ncc (2.20)

where Nsp is the number of log-spectral coefficients, Ui are the log-spectral

coefficients values, and Ncc is the number of Cepstral coefficients to calculate

(Ncc ≤ Nsp).

The log followed by a DCT is somehow an inverse FFT and usually makes

the coefficients more suitable for Gaussian based models, such as GMMs.

Pre-emphasis Windowing FFT Filterbank Log Cosine

Raw Signal Spectral
vectors

Cepstral
vectors

Figure 2.2. Modular Representation of a Filter-bank-based Cepstral parameterization.

REF D. A. Reynolds and R. C. Rose. Robust text-independent speaker identification using

gaussian mixture speaker models. IEEE Transactions On Speech and Audio Processing, 3

(1), 1995.



14 Text-Independent Speaker Verification Systems

Additional Transformations

The first Cepstral coefficient, often called c0 is similar to the energy of the signal

for a given window. In our case this coefficient is replaced by the log-energy.

Most of the models used in text-independent speaker verification do not use

explicitly temporal information. However, it is possible to include short term

temporal information by using dynamic features such as are the first derivative

parameters computed as follows:

dt =
∑W
i=1W (ct+i − ct−i)

2
∑W
j=1 j

2
(2.21)

where ct are the Cepstral coefficients and W the window size to compute the

derivative coefficients. A common value for W is 2. This is a polynomial

approximation of the derivative. Some authors also use the second derivative

coefficients, which can be obtained by re-applying the derivative transformation

to the first derivative coefficients. In our experiments, this approach does not

improve the results and thus will not be used. The dt coefficients are simply

concatenated to the ct coefficients.

In order to compensate for the distortion of the acquisition system (channel

effect), Cepstral Mean Subtraction (CMS) is often apply. CMS consists in

removing the average value computed over the complete sequence for each

coefficient. In addition to CMS, the Cepstral parameters can also be reduced:

the variance over the complete sequence is equal to one. Note than the energy

coefficient is not normalized. Its value is useful to discard silence frames and

will be removed after the silence/speech detector, as it is more related to the

distance between the speaker and the microphone than the speaker itself.

Silence/Speech Detector

A recording sequence contains some frames pronounced by the speaker and

some frames containing noise. In order to take a robust decision, the silence

frames must be discarded. Silences may appear before or after the sentence but

also in between words. In order to decide whether a frame contains speaker

information or not, several techniques can be used. The simplest is to fix a

threshold and reject all frames for which the energy coefficient is lower that

this threshold. From our point of view, this approach has some limitations:

how to estimate the correct threshold. Why to limit this method to the energy

coefficient?
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Our approach is similar to that described in (Magrin-Chagnolleau et al.,

2001) and consists in training a GMM with two Gaussians using the complete

set of feature vectors. This training is unsupervised in the sense that we do not

use any frame label (that would say whether a frame is silence or speech). Based

on the hypothesis that the speech contains more energy than the silence, the

Gaussian with the highest energy coefficient will be labelled as speech and the

other as silence. This model is trained on each new sequence. An alternative

consists to train a prior model using few sequences and adapt it using a MAP

algorithm similar to (2.6) for each new sequence. To decide if a new frame

is speech or not the ML criterion is used. This approach seems more robust

compared to the simple energy based system.

After all these transformations, in our case, we obtain a variable length

sequence of vectors of dimension 33 each.

2.4 Score Normalization

The last step of a speaker verification system is to compare the score to

a decision threshold. If this score is higher than the decision threshold, the

decision is “accept” otherwise “reject”. Estimating a good decision threshold

is still an open problem and is generally tuned empirically. As very few client

training accesses are available, the decision threshold ∆ is common to all the

speakers. Thus the decision should be robust to the speaker and access vari-

ability. Several causes can make a pronounced sentence by a speaker variable:

The intra-sentence variability: phonetic contents, channel transmission ef-

fect.

The intra-speaker variability: quality of the training examples, emotion,

state, health, time.

The inter-speaker variability: gender, age, speaking rate, accents.

Score normalization procedures try to increase the robustness to the access

variability. Originally proposed by Li and Porter (1988), most normalization

procedures are of the form:

l̂lr(X) =
llr(X)− µ

σ
(2.22)

REF I. Magrin-Chagnolleau, G. Gravier, and R. Blouet. Overview of the 2000-2001 ELISA

consortium research activities. In A Speaker Odyssey, pages 67–72, June 2001.

REF Kung-Pu Li and J. E. Porter. Normalizations and selection of speech segments for

speaker recognition scoring. In Proceedings of the IEEE ICASSP, pages 595–597, 1988.
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where l̂lr(X) is the new normalized score, llr(X) is the original score, µ, σ some

parameters to estimate.

Several normalization techniques to estimate µ and σ have been proposed

in the literature. We propose to describe here the two most well known: the

T-norm and the Z-norm.

T-norm

The T-norm, as introduced in (Auckenthaler et al., 2000) and (Navratil and

Ramaswamy, 2003), estimates µ and σ as the mean and the standard deviation

of LLRs using models of a subset of impostors, for a particular test access X0:

µM =
1
M

∑
m

llrm(X0) (2.23)

σM =

√
1
M

∑
m

(llrm(X0)− µM )2 (2.24)

where M is the number of impostor models and llrm is the score for the mth

impostor model for the particular access X0. Using (2.23) we obtain:

llriT−norm
=

llri − µM
σM

> ∆ . (2.25)

This method is often referred to as utterance based approach and tried to

reduce the variability related to the test accesses. This approach provides

usually good improvement, but is quite costly.

Z-norm

The basis of Z-norm (Auckenthaler et al., 2000) is to test a speaker model

against example impostor utterances and use the corresponding LLR scores to

estimate a speaker specific mean and standard deviation:

µJ =
1
J

∑
j

llrSi
(Xj) (2.26)

σJ =
√

1
J

∑
j

(llrSi(Xj)− µJ)2 (2.27)

REF R. Auckenthaler, M. Carey, and H. Lloyd-Thomas. Score normalization for text-

independent speaker verification systems. Digital Signal Processing, 10:42–54, 2000.

REF J. Navratil and Ganesh N. Ramaswamy. The awe and mystery of t-norm. In Proc.

of the European Conference on Speech Communication and Technology, pages 2009–2012,

2003.
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where J is the number of impostor accesses and Si the ith speaker.

Z-norm is often referred to as model based approach and tried to be robust

to the model variability. This approach is especially efficient when the training

material for each client model is different. The parameters µJ and σJ can

be estimated during the training phase and thus no additional time is needed

during the client authentication.

2.5 SVM and GLDS Kernel

Several SVM based approaches have been proposed recently to tackle the

speaker verification problem (Wan and Renals, 2005) and (Campbell et al.,

2005). While this task is mainly a two-class classification problem for each

client, it differs from the classical problem by the nature of the examples,

which are variable length sequences. Since classical SVMs can only deal with

fixed size vectors as input, two approaches can be considered: either work at

the frame level and merge the frame scores in order to obtain only one score for

each sequence; or try to convert the sequence into a fixed size vector. The first

approach is probably not ideal, because we try to solve a problem which is more

difficult than the original one: indeed, each frame contains little discriminant

information and even some contain no information (like silence frames). Most

solutions are thus based on the second approach, such as the so-called Fisher

scores or the explicit polynomial expansion.

Fisher score based systems (Jaakkola and Haussler, 1998) compute the

derivative of the log likelihood of a generative model with respect to its pa-

rameters and use it as input to an SVM. This provides a nice theoretical

framework, but is very costly for GMM based generative models with large

observation space (which yield more than 10 000 parameters in general for

speaker verification) and furthermore still needs in training generative models.

The explicit polynomial expansion approach (Campbell, 2002) expands each

REF Vincent Wan and Steve Renals. Speaker verification using sequence discriminant sup-

port vector machines. IEEE Transactions on Speech and Audio Processing, 13(2):203–210,

2005.

REF W.M. Campbell, J.P. Campbell, D.A. Reynolds, E. Singer, and P.A. Torres-

Carrasquillo. Support vector machines for speaker and language recognition. Computer

Speech and Language, 2005.

REF T.S Jaakkola and D. Haussler. Exploiting generative models in discriminative classi-

fiers. Advances in Neural Information Processing, 11:487–493, 1998.

REF W.M. Campbell. Generalized linear discriminant sequence kernels for speaker recogni-

tion. In Proc IEEE International Conference on Audio Speech and Signal Processing, pages

161–164, 2002.



18 Text-Independent Speaker Verification Systems

frame of a sequence using a polynomial function and averages them over the

whole sequence in the feature space. The resulting fixed size vector is used

as input to a linear SVM (Φ(x) = x). This kernel, called GLDS (Generalized

Linear Discriminant Sequence), can be expressed as:

K(Xi,Xj) = Φ(Xi)Ψ−1Φ(Xj) (2.28)

where Ψ is a matrix derived by the metric of the feature space induced by Φ().

This matrix is usually a diagonal approximation ψ of the covariance matrix

computed over all the training data. We furthermore define:

Φ(X) =
1
T

T∑
t=1

φ(xt) (2.29)

and

φ̃(xt) =
φ(xt)√
ψ

(2.30)

where φ̃() is the normalized version of φ(), the fraction represents a term by

term division of two vectors and the square root of a vector is a vector of the

square root of its elements. We can thus rewrite (2.28) as:

K(Xi,Xj) =
1
Ti

Ti∑
ti=1

φ̃(xti) ·
1
Tj

Tj∑
tj=1

φ̃(xtj ) (2.31)

where φ̃() maps the example xt ∈ Rd → RNf , Nf = (d+p−1)!
(d−1)!p! is the dimension

of the feature space, d is the dimension of each frame augmented by a new

coefficient equal to 1, p is the degree of the polynomial expansion and each

value n ∈ {1, ..., Nf} of the expanded vector corresponds to a combination of

r1, r2, ..., rd as follows:

φ′k(r1,r2,...,rd)(xt) =
1√
ψn

xr11 x
r2
2 ...x

rd

d (2.32)

for all possible combinations of r1, r2, ..., rd such that
∑d
i=1 ri = p and ri ≥ 0.

Campbell proposed a method to normalize each expanded coefficient using

ψ computed over all concatenated impostor sequences. Once all vectors are

computed and normalized, they can be used as input to a linear SVM. The

output of the SVM is compared to a decision threshold in order to accept or

reject an access. This method is quite fast and robust, but is limited to the

polynomial form.

Figure 2.3 summarizes the state-of-the-art GLDS SVM based system.
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Figure 2.3. A summary of a state-of-the-art GLDS SVM based system.

2.6 Conclusion

In this chapter, we have presented different state-of-the-art systems as found

in the literature. In Chapter 4, we will present experimental results obtained

by these models on the chosen benchmark databases. For a deeper analysis of

these algorithms, we kindly invite the reader to go to Chapter 5.

At first, the performance measures are described in Chapter 3, because we

think that they are especially important and often badly used in that domain.

We thus dedicate a whole chapter to define new measures and to clearly explain

how to use them in the speaker verification domain.
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