
5 Text-Independent Speaker Verification:
a Machine Learning Perspective

In order to propose new approaches based on discriminant models, we

first need to define a general framework for speaker verification that would

include several kinds of models: probabilistic models such as GMMs and non-

probabilistic models such as SVMs. This framework should also enable the use

of posterior probability models such as some kinds of multi-layer perceptrons

(MLP). It is interesting to note that the normalization factor added empirically

to GMMs will appear naturally for posterior probability based models.

The main purpose of this thesis is to use discriminant models for text-

independent speaker verification. We should first try to give a definition of

discriminant models. Moreover, GMMs are often used as state-of-the-art mod-

els and they are usually considered as non-discriminant. This is true in the

sense that they try to estimate the data density of each positive and negative

class independently. Here, we show that, after applying some modifications

proposed by the speaker verification community in order to reach state-of-the-

art performance, the models become discriminant and can be seen as a mixture

of linear classifiers.

In this chapter, we also propose a unified framework that includes most

score normalization techniques used in text-independent speaker verification.

Furthermore, an implementation of two of the most common techniques, the so-

called T- and Z-normalizations, are proposed in this novel framework. While

the two approaches are not strictly equivalent, in practice they give similar

results. In fact, this new framework can be used to understand the assumptions

that are implicit when using T- and Z-normalization. Moreover, it can also been

used to develop new normalization techniques.

The outline of this chapter goes as follows. In Section 5.1, we present

a general framework to use probability and non-probability based models for
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speaker verification. In Section 5.2, we define what a discriminant model is and

analyze whether GMMs are discriminant or not. Finally, Section 5.3 presents

a new statistical framework for score normalization methods, such as T- and

Z- normalizations.

5.1 Framework

Person authentication systems are in general designed in order to let genuine

clients access a given service while forbidding it to impostors. In this thesis,

we consider the problem from a machine learning point of view and we treat it

independently for each speaker.

There are some specificities that make speaker verification different from

a standard two-class classification problem. First, the input data are variable

size sequences: indeed, the length of each sequence depends on the speaker

rate and the phonetic content of the sentence. Furthermore, only few client

training examples are available: in a real application, it is not possible to ask

a client to speak during several hours or days in order to capture the entire

variability of his voice. We have usually between one and three utterances of

each sentence. Finally, the impostor distribution is not known: we have no idea

of what an impostor is in a “real” application. In order to simulate impostor

accesses, we normally use other speakers in the database. This implies that the

intra-impostor distance distribution is the same as the impostor-client distance

distribution. This also means that plenty of impostor accesses are usually avail-

able, often more than 1000, which makes the problem highly unbalanced. All

these specificities are important and suggest that machine learning algorithms

should be adapted to this specific task. Let us first define a general framework

for this problem.

As we have already seen, this is a two-class classification task defined as

follows. Given a sentence X pronounced by a speaker Si, we are searching for

a parametric function fΘSi
() and a decision threshold ∆Si such that:

fΘSi
(X) > ∆Si (5.1)

for all accesses X coming from Si and only for them.

In order to select the best function, we need to define a set of functions

fΘ() parameterized by Θ and make use of a set of sentence examples called the

training set :

Tr =
{

(Xl, yl)|Xl ∈ Rd×Tl , yl ∈ {−1, 1}
}
l=1..NT r
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where Xl is an input sequence of Tl frames of d dimensions with a corresponding

target yl equal to 1 for a true client sequence and −1 otherwise, NTr is the

total number of sequences in the training set. We are searching for parameters

Θ of a parametric function fΘ : Rd×Tl 7→ R that minimizes a loss function Q()

which returns low values when fΘ(Xl) is near yl and high values otherwise:

Θ∗
Si

= arg min
ΘSi

∑
(Xl,yl)∈Tr

Q(fΘSi
(Xl), yl).

The loss function usually accounts for the training errors as well as some

constraints that are known to yield better generalization performance (for ex-

ample maximizing the margin, as is the case for SVMs). Note that the overall

goal is not to obtain zero error on Tr but rather on unseen examples drawn

from the same probability distribution as those of Tr.

Because of a lack of data available for each client, it is not possible to search

for a client dependent decision threshold ∆Si
in (5.1). Let us first define a set

of clients, called development set, different from the clients used for the test

set and defined as:

Dev =
{

(Xl, yl, Sl)|Xl ∈ Rd×Tl , yl ∈ {−1, 1}
}
l=1..NDev

where Sl is the claimed identity corresponding to the example Xl and NDev is

the total number of sequences in the development set. We are searching for a

client independent decision threshold ∆Si
≈ ∆ that minimizes a loss function

Qthrd(), for example the EER as defined in (3.5):

∆∗ = arg min
∆

Qthrd(Dev,∆). (5.2)

Depending on whether the underlying fΘ() is based on probabilities or not,

two frameworks can be considered and are presented here.

Statistical Framework

State-of-the-art text independent speaker verification systems are based on

statistical generative models. We are interested in P (C|X, Si): the probability

that a client C has pronounced the sentence X and claimed the identity Si.

Using Bayes theorem, we can write it as follows:

P (C|X, Si) =
p(X, Si|C)P (C)

p(X, Si)
. (5.3)

In order to decide whether or not client Si has indeed pronounced sentence

X, we compare P (C|X, Si) to the probability that any other speaker proclaim-
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ing identity Si has pronounced X, which we write P (C̄|X, Si). We then accept

the claimant if:

P (C|X, Si) > P (C̄|X, Si). (5.4)

Using (5.3), (5.4) can then be rewritten as:

p(X, Si|C)P (C)
p(X, Si)

>
p(X, Si|C̄)P (C̄)

p(X, Si)
. (5.5)

Rewriting (5.5) in order to isolate terms that do not depend on X, we

obtain:

p(X, Si|C)
p(X, Si|C̄)

>
P (C̄)
P (C)

. (5.6)

Using the conditional probabilities law, we get:

p(X|Si, C)P (Si|C)
p(X|Si, C̄)P (Si|C̄)

>
P (C̄)
P (C)

. (5.7)

Once again, isolating terms that do not depend of X, we get:

p(X|Si, C)
p(X|Si, C̄)

>
P (C̄)P (Si|C̄)
P (C)P (Si|C)

. (5.8)

Using Bayes rule, we finally obtain likelihoods:

p(X|Si, C)
p(X|Si, C̄)

>
P (C̄|Si)
P (C|Si)

≈ ∆ (5.9)

where the ratio of probabilities on the right hand side of the equation can be

replaced by the decision threshold ∆.

From (5.9), one can derive two approaches, one based on likelihood models

and one based on posterior models.

GMM Based Approach

A statistical framework can be defined using the following general form:

fΘSi
(X) =

fΘ+
Si

(X)

fΘ−
Si

(X)
=
p(X|Si, C)
p(X|Si, C̄)

where fΘ+
Si

() is a function estimated with the positive examples and fΘ−
Si

() is a

function estimated with the negative examples. The loss function used to train

fΘ−
Si

() is the negative log likelihood and can be expressed as:

Θ−
Si

∗
= arg min

Θ−
Si

∑
(Xl)∈Tr−

− log p(Xl|Θ−)
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where Tr− is the subset of examples of Tr where yl = −1. As generally few

positive examples are available, the loss function used to train fΘ+
Si

() is based

on a Maximum A Posteriori (MAP) adaptation scheme and can be written as

follows:

Θ+
Si

∗
= arg min

Θ+
Si

∑
(Xl)∈Tr+

− log
(
P (Xl|Θ+)P (Θ+)

)
where Tr+ is the subset of examples of Tr where yl = 1. This MAP approach

puts some prior on the distribution of Θ+
Si

in order to constrain them to some

reasonable values.

We thus need to create a world model of p(X|Si, C̄), as well as a client

model p(X|Si, C) for every potential speaker.

Posterior Probability Models

Multi Layer Perceptron (MLP) are known to be good posterior probability

estimators (Lippmann, 1992). In order to try to use them directly as discrimi-

nant models, we derive the equation of the probabilistic framework in order to

obtain a posterior probability form. Using (5.9) and making the assumption

that all T frames xt of X are independent, as is done with GMMs, we obtain:

T∏
t=1

p(xt|Si, C)
p(xt|Si, C̄)

>
P (C̄|Si)
P (C|Si)

. (5.10)

Using the conditional probability law, we get:

T∏
t=1

p(xt, Si, C)P (Si, C̄)
p(xt, Si, C̄)P (Si, C)

>
P (C̄|Si)
P (C|Si)

. (5.11)

Using the conditional probability law again, we get:

T∏
t=1

P (C|xt, Si)P (C̄|Si)
P (C̄|xt, Si)P (C|Si)

>
P (C̄|Si)
P (C|Si)

. (5.12)

Regrouping identical terms, we obtain:

T∏
t=1

P (C|xt, Si)
P (C̄|xt, Si)

>
P (C|Si)T−1

P (C̄|Si)T−1
. (5.13)

REF R. P. Lippmann. Neural Network Classifiers Estimate Bayesian a Posteriori Probabil-

ities. Neural Computation, 3:461–483, 1992.
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Taking the log, we obtain:

1
T − 1

T∑
t=1

log
P (C|xt, Si)
P (C̄|xt, Si)

> log
P (C|Si)
P (C̄|Si)

. (5.14)

We can normally assume that P (C̄|xt, Si) = 1−P (C|xt, Si); we thus obtain:

fΘSi
(X) =

1
T − 1

T∑
t=1

log
P (C|xt, Si)

1− P (C|xt, Si)
> ∆. (5.15)

where the ratio of log probabilities is usually replaced by the decision threshold

∆.

In practice, with generative models, we normalize the LLR by the number

of frames T in order to be independent of the length of the access. Here, this

factor appears naturally from the equations.

In this case (5.15) is directly our scoring function fΘSi
(X). When the model

used is an MLP with a single output passed through a sigmoid function, the

decision function can be simplified as:

fΘSi
(X) =

1
T − 1

T∑
t=1

g(xt) (5.16)

where g(xt) is the input of the sigmoid function. The loss function used to

train fΘSi
(X) can simply be to minimize the mean squared error or better, the

cross-entropy:

Θ∗
Si

= arg min
ΘSi

∑
(Xl,yl)∈Tr

Tl∑
t=1

log
(

1 + exp(−ylfΘSi
(xlt))

)
. (5.17)

A Score Based Framework

If instead of relying on models generating probabilities, we want to use non-

statistical models such as SVMs, as described in the remaining of this thesis,

the framework described at the beginning of this section can be applied directly

and no probabilistic interpretation need to be given to fΘSi
(). In Chapter 2 the

parametric form of function fΘSi
() and the loss function Q() used by SVMs

have been described in details. Using the trick described by Platt (2000),

one can force SVMs to output probabilities. However, this only approximates

probabilities, but one cannot consider SVMs to be probabilistic models.

REF J. C. Platt. Probabilities for SV machines. In A. J. Smola, P. L. Bartlett, B. Schölkopf,

and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 61–74. MIT Press,

2000.
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5.2 Are GMMs Discriminant?

As we have already seen in this thesis, one of the state-of-the-art models

is based on GMMs. In the speaker verification domain, most researchers use

the term “generative models”, opposing them to “discriminant models”. By

definition, a generative model can generate data but nothing prevent it to be

discriminant. Conversely, a “diabolo” neural network (trained to reconstruct

the inputs) for example, cannot generate data but is non-discriminant in the

sense that it is trained using only one class of examples. In this thesis, we

consider a model as discriminant if the parameters of this model are trained

using the examples of more than one class, typically using client and impostor

data. Conversely, a model is considered non-discriminant only if its parameters

are trained using examples of only one class. Basically, the cost function decides

if a model is discriminant or not. Given this new definition, can we say whether

a GMM based system is discriminant or not?

When P (X|Si, C) and P (X|Si, C̄) are trained separately using an ML cri-

terion, the two models are independent and thus we can consider the resulting

model as non-discriminant. However, as explained in Chapter 2, several mod-

ifications have been used to reach state-of-the-art performance, and some of

them may suggest that the resulting model is not optimized to have a good

data density estimation. Especially the use of a MAP adaptation procedure

seems to make the GMMs discriminant. In (Mariéthoz and Bengio, 2002), we

tried to use different kinds of adaptation methods, but only MAP adaptation

seems to be so efficient. As a matter of fact, using MAP, the client parameters

are a linear combination of the world model parameters and the new observed

data. Thus, at least, the client model should be considered as discriminant.

Given these intuitions, we can now try to make some simplifications on the

GMM based system in order to have an interpretation of the resulting decision

function.

GMMs: a Mixture of Linear Classifiers

As we know, GMMs are often used as data density estimators, but also as

clustering algorithms. The EM training algorithm can be seen as a soft ver-

sion of the well-known K-Means clustering algorithm. In the case of speech

frames, one can thus expect that each Gaussian represents somehow a sub-unit

REF J. Mariéthoz and S. Bengio. A comparative study of adaptation methods for speaker

verification. In International Conference on Spoken Language Processing ICSLP, pages 581–

584, Denver, CO, USA, September 2002. IDIAP-RR 01-34.
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of speech. Moreover, the LLR between the world and the client model is used to

take the decision and the client model parameters are adapted from the world

model and thus each Gaussian in the world model has its own corresponding

Gaussian in the client model. Applying some approximations, such as forcing

each frame to be represented by only one Gaussian, GMM based systems can

thus be seen as performing the verification in two steps: first the frames are

clustered into sub-units of speech; then the classification is done using a local

classifier composed of a couple of Gaussians (one from the client model, and

the corresponding one in the world model). In order to consider couples of

Gaussians, we first need to enforce an exact correspondence between the world

and client Gaussians. This is in fact already the case when MAP adaptation is

used to train client models. More precisely, we chose to adapt only the mean

parameters of the world model Ω, as usually done in speaker verification, using

the following MAP equation (same as (2.6)):

µ̂g = λµg,Ω + (1− λ)µg,C . (5.18)

Let us now assign each frame xt to only one Gaussian as follows: let g∗t,θ
be the Gaussian in model Θ that best represents xt:

g∗t,θ = arg max
g

logwg p(xt|Θ, g) (5.19)

where wg is the weight corresponding to the Gaussian g.

We can compute the corresponding approximation of llr (2.18) as follows:

llrv =
1
T

∑
t

log
p(xt|Si, C, g∗t,ΘSi

)

p(xt|Si,Ω, g∗t,ΘΩ
)
. (5.20)

Note that there is no constraint in (5.20) that guarantees that a given

frame is assigned to the same Gaussian index in the client and world models.

In order to enforce this, a synchronous alignment procedure, originally applied

for HMMs (Mariéthoz et al., 1999), can be used:

g∗t = arg max
g

β logwg p(xt|Si,Ω, g) + (1− β) logwg p(xt|Si, C, g) (5.21)

REF J. Mariéthoz, Dominique Genoud, Frédéric Bimbot, and Chafik Mokbel. Client / world

model synchronous alignement for speaker verification. In 6th European Conference on Speech

Communication and Technology — Eurospeech’99, Budapest, Hungary, September 1999.
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where β is a trade-off between placing our confidence in the world or the client

model. Using this synchronous alignment, we define a new score llrs as follows:

llrv ∼= llrs =
1
T

∑
t

log
p(xt|Si, C, g∗t )
p(xt|Si,Ω, g∗t )

. (5.22)

We can now express (5.22) as a sum over all couples of Gaussians as follows:

llrs =
∑
g

T (g)
T

llrs(g) where llrs(g) =
1

T (g)

T (g)∑
t=1

log
p(xrg(t)|Si, C, g)
p(xrg(t)|Si,Ω, g)

. (5.23)

where T (g) is the number of frames assigned to the couple of Gaussians g, and

rg(t) returns the index of the tth frame assigned to the cluster g. This can

be seen as a mixture of classifiers where the weight assigned to each expert is

T (g)/T .

It is interesting to analyze more deeply the local classifier for each frame xt.

If we train the client model using MAP by adapting only the mean parameters

keeping variances and weights the same as the world model, and if we force

the EM algorithm to perform only one iteration we obtain:

llrs(g,xt(g)) = log
p(xt(g)|Si, C, g)
p(xt(g)|Si,Ω, g)

(5.24)

= log
1√

2πσ2
g

−
(

xt(g) − µ̂g
2 σg

)2

− log
1√

2πσ2
g

+
(

xt(g) − µg,Ω
2 σg

)2

=
µ̂g − µg,Ω

σ2
g

(
xt(g) −

µ̂g + µg,Ω
2

)
. (5.25)

We can see in (5.25) that σ2
t can be factorized easily and appears in the

weight of each expert. More formally we obtain:

llrs =
Ng∑
g

T (g)
σ2
g T

llrs(g) where llrs(g) =
1

T (g)

T (g)∑
t(g)

(µ̂g−µg,Ω)
(
xt(g)−

µ̂g + µg,Ω
2

)
.

(5.26)

Remember (from Chapter 2) that until now it was difficult to interpret the

use of the variance flooring in the context of density estimation. Indeed, the

actual value of this hyper parameter is so huge in practice (between 10% and

60% of the global variance of the data) that it makes the distribution nearly

uniform. On the other hand, interpreting the LLR as a mixture of linear classi-

fier, variance flooring can be interpreted as pushing the weights of every experts

to be equal. That tends to make the weight of each local classifier independent
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of the variance of the corresponding sub-acoustic unit. This suggests that we

could learn these weights using a discriminant cost function.

Including (5.18) to (5.25), we obtain:

µg,C − µg,Ω
σg

(
xt(g)
σg

−
[
(1− λ)

µg,C + µg,Ω
2σg

+ λ
µg,Ω
σg

])
(5.27)

Figure 5.1 shows that the corresponding decision function is a perpendicular

bisector. The adaptation factor λ affects only the bias while the slope of the

decision function is still the same. The adaptation factor varies the decision

function between the perpendicular bisector and the line passing by the non-

adapted mean vector.

0 > λ > 1
λ = 1

µg,C

µg,Ω

Perpendicular Bisector
λ = 0

Figure 5.1. Perpendicular bisector interpretation.

Experimental Results

In order for this interpretation to be valid, we need to make several simplifica-

tions as already explained: training the client model by adapting only the mean

vector for only one EM iteration, plus some approximations of the LLR as de-

tailed in (5.19) - (5.22). To verify whether these simplifications are reasonable,

we performed some experiments described as follows.

First a GMM based system using several iterations of EM during the MAP

adaptation procedure is referred to as the baseline system. Then the approx-

imation done using (5.19) and with only one EM iteration is performed to

validate the max approximation. Finally the synchronous alignment experi-

ments are done to validate the approximation given by (5.22). Two values of



Are GMMs Discriminant? 73

β in (5.21) are given: aligning on the world model (β = 1), or aligning on

the client model (β = 0). All the results are performed on the NIST database

described in Chapter 4 and are presented in Table 5.1 and Figure 5.2.

Table 5.1. Results on the NIST database: GMM baseline results, max ap-

proximation with only one iteration of EM training, synchronous alignment on

client and on world model.

Baseline Max. 1 Iter. Sync. β = 1 Sync. β = 0

HTER [%] 8.68 8.88 9.72 8.68

95% Confidence ±0.84 ±0.82 ±0.89 ±0.82

Figure 5.2. Results on the NIST2002 database: GMM baseline results, max

approximation with only one iteration for EM training, synchronous alignment

on client and on world model.

All the simplifications seem reasonable as all approaches give similar results

except the synchronous alignment using the world model β = 1.
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We show results with the alignment on the world model only because it

can be useful to speed up the testing procedure when the T-normalization is

used. Indeed in this case, we have to compute the best Gaussian only once for

all T-norm models. Unfortunately, even if this is feasible, the performance is

significantly degraded.

Note that, when T-normalization is applied to the max approximation with

an alignment only on the client model, the performance is exactly the same

because the world model contribution is canceled due to the T-normalization.

Discussion

We have shown that a GMM based state-of-the-art system can be seen as

a mixture of linear classifiers. It is interesting to note that all the “tricks”

used to make these generative models work now have a new meaning: (1) the

normalization factor added empirically to be independent of the length of the

sequence appears naturally in the discriminant framework; (2) the variance

flooring that makes the new density estimation quasi uniform in the generative

model transforms the weight of each local expert to be uniform and suggests

to use a discriminant criterion to be chosen correctly; (3) finally, the MAP

adaptation factor represents the bias of each local expert and can thus be seen

as a generalization factor. It is particularly true given the fact that no impostor

distribution is really available and thus the confidence on this estimation can

be represented by the MAP adaptation factor.

5.3 Score Normalization

Text-independent speaker verification systems have evolved through time

(Bimbot et al., 2004). The first systems had reasonable performance only

in controlled conditions (no noise, same channel, same gender, etc). Over

the years, researchers have improved their systems for unmatched conditions,

thanks largely to score normalization techniques. Here, we propose a unified

framework that explains several score normalization techniques used in text-

independent speaker verification. Furthermore, an implementation of two of the

most common techniques, the so-called T- and Z-normalization (Auckenthaler

REF F. Bimbot, J.-F. Bonastre, C. Fredouille, G. Gravier, I. Magrin-Chagnolleau,

S. Meignier, T. Merlin, J. Ortega-Garcia, D. Petrovsk-Delacrétaz, and D. Reynolds. A tutorial

on text-independent speaker verification. EURASIP Journal on Applied Signal Processing,

4:430–451, 2004.

REF R. Auckenthaler, M. Carey, and H. Lloyd-Thomas. Score normalization for text-

independent speaker verification systems. Digital Signal Processing, 10:42–54, 2000.
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et al., 2000), is proposed here in this novel framework. While the two ap-

proaches are not strictly equivalent, in practice they give similar results. In

fact, this new framework can be used to understand the assumptions that are

implicit when using T- and Z-normalization. Moreover, it can also be used to

develop new normalization techniques.

Unified Framework for Score Normalization

Most state-of-the-art text-independent speaker verification systems use linear

score normalization functions of the form:

llrnorm =
llr− µ

σ
> ∆ (5.28)

where µ and σ are respectively the mean and the standard deviation of a nor-

mal distribution of LLRs. These parameters are then estimated differently

for each type of score normalizations. We propose a unified framework for all

kinds of normalization of the form of (5.28), and also other non-linear func-

tions. We further propose an implementation for the two well-known T- and

Z-normalization techniques.

We have seen that in text-independent speaker verification we are interested

in the probability that a speaker Si has pronounced a sentence X. Let us now

consider the LLR as an additional random variable, and let us introduce it

in the original framework by looking at P (C|llr,X, Si), the probability that a

speaker Si has pronounced a sentence X and obtained an LLR of llr. Using

the same approach as in Section 5.1, we obtain:

P (C|llr,X, Si) > P (C̄|llr,X, Si). (5.29)

Applying the conditional law of probabilities, we obtain:

P (C, llr,X, Si) > P (C̄, llr,X, Si). (5.30)

Applying the conditional law of probabilities, we obtain:

p(llr|C,X, Si)p(X, C, Si) > p(llr|C̄,X, Si)p(X, C̄, Si). (5.31)

Applying the conditional law of probabilities on the second term of each

part of the inequation, we obtain:

p(llr|C,X, Si)p(X|C,Si)P (C|Si) > p(llr|C̄,X, Si)p(X|C̄, Si)P (C̄|Si) (5.32)
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p(llr|C,X, Si)p(X|C,Si)
p(llr|C̄,X, Si)p(X|C̄, Si)

>
P (C̄|Si)
P (C|Si)

. (5.33)

Taking the logarithm, we finally obtain:

llrnorm = log
p(llr|C,X, Si)
p(llr|C̄,X, Si)

+ llr > log
P (C̄|Si)
P (C|Si)

≈ ∆ . (5.34)

Comparing equation (5.34) of this new framework with the original equa-

tion (2.18) shown in Chapter 2, we can see that a new term appears. It is the

log of the ratio of two likelihoods estimated by two score distributions. The nu-

merator represents the distribution of LLRs for a given access X and for client

Si. The denominator represents the distribution of LLRs for a given access X

and for all impostors C̄. We will see that, depending on how these two distri-

butions are estimated, we can obtain classical score normalization techniques

such as T-norm (when estimated on a test access) or Z-norm (when estimated

for each client Si).

Relation to Existing Normalization Techniques

T-norm

The T-norm, as introduced in (Auckenthaler et al., 2000) and (Navratil and

Ramaswamy, 2003), estimates µ and σ as the mean and the standard deviation

of the log likelihood ratios (LLRs) using models of a subset of impostors, for a

particular test access X.

µM =
1
M

∑
m

llrm(X) (5.35)

σM =

√
1
M

∑
m

(llrm(X)− µM )2 (5.36)

where M is the number of impostor models and llrm is the score for the mth

impostor model for the particular access X. Using (5.28) we obtain:

llrT−norm =
llr− µM
σM

> ∆ . (5.37)

Let us now show how it is possible to perform T-normalization using our

new framework under reasonable assumptions.

REF R. Auckenthaler, M. Carey, and H. Lloyd-Thomas. Score normalization for text-

independent speaker verification systems. Digital Signal Processing, 10:42–54, 2000.

REF J. Navratil and Ganesh N. Ramaswamy. The awe and mystery of t-norm. In Proc.

of the European Conference on Speech Communication and Technology, pages 2009–2012,

2003.
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Given (5.34), we must define two distributions, which will be here defined

as Normal, as follows:

p̂(llr|C,X, Si) = N (llr;µC , σC) (5.38)

p̂(llr|C̄,X, Si) = N (llr;µC̄ , σC̄) (5.39)

where µC , σC are the parameters of the client distribution and µC̄ , σC̄ are the

parameters of the impostor distribution. To obtain the T-norm we make the

assumption that the standard deviations are equal:

σM = σC = σC̄ . (5.40)

We thus obtain:

log
p̂(llr|C,X, Si)
p̂(llr|C̄,X, Si)

= − 1
2σ2

M

(
(llr− µC)2 − (llr− µC̄)2

)
− log

√
2πσ2

M√
2πσ2

M

=
µC − µC̄
σ2
M

(
llr− µC + µC̄

2

)
. (5.41)

If we now define the means as:

µC = llr

µC̄ = µM (5.42)

when llr > µM . Otherwise, a reasonable thing to do is to reject directly

without any normalization a claimed speaker if its obtained LLR is smaller

than the average of LLRs over a subset of impostors.

We finally obtain:

llrunified−T−norm = llr +
(llr− µM )2

2σ2
M

> ∆ . (5.43)

Z-norm

The basis of Z-norm (Auckenthaler et al., 2000) is to test a speaker model

against example impostor utterances and to use the corresponding LLR scores

to estimate a speaker specific mean and standard deviation:

REF R. Auckenthaler, M. Carey, and H. Lloyd-Thomas. Score normalization for text-

independent speaker verification systems. Digital Signal Processing, 10:42–54, 2000.
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µJ =
1
J

∑
j

llr(Xj) (5.44)

σJ =
√

1
J

∑
j

(llr(Xj)− µJ)2 (5.45)

where J is the number of impostor accesses.

Using a similar approach to T-normalization, the estimate of the two dis-

tributions needed for the proposed unified framework becomes:

p̂(llr|C,X, Si) = N (llr;µC , σC) (5.46)

p̂(llr|C̄,X, Si) = N (llr;µC̄ , σC̄) (5.47)

with, again, the same standard deviation, σJ = σC = σC̄ .

If we now define the means as follows:

µC = llr

µC̄ = µJ (5.48)

when llr > µJ . Otherwise, we reject directly without any normalization a

claimed speaker if its obtained LLR is smaller than the average of LLRs over

a subset of impostors.

Then using (5.48) and (5.41) we obtain:

llrunified−Z−norm = llr +
(llr− µJ)2

2σ2
J

> ∆ . (5.49)

Discussion

In order to implement the standard T- and Z-norm using the new score nor-

malization framework, we made some strong assumptions to fix the score dis-

tribution parameters. One can consider the choice of the mean parameters

reasonable. At the opposite, fixing the standard deviation parameter to be the

same for both the client and impostor score distributions seems less obvious.

Indeed the variability of the impostor scores should be bigger than the vari-

ability of the client scores because the variability of the impostor accesses is

obviously bigger than the variability of the client accesses. Even if usually only

too few client accesses are available to have a good estimate for each client,

one can imagine to use a set of other clients to estimate a client independent

standard deviation as it is usually done for the decision threshold as explained

in Section 5.1.
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Comparison Between New and Classical Z- and T-norm

Here, we show the difference between the T-norm implementation found in the

literature and our implementation using a unified framework. This demonstra-

tion can also be applied to Z-normalization.

The new implementation is given by:

llrunified−T−norm = llr +
(llr− µM )2

2σ2
M

> ∆ (5.50)

The classical method to implement T-norm is equivalent to the second term

of the left side of (5.50) since:

(llr− µM )2

2σ2
M

> Θ

(llr− µM )2 > Θ 2σ2
M

(llr− µM )2 − 2Θ σ2
M > 0[

(llr− µM −
√

2Θ σM ) · (llr− µM +
√

2Θ σM )
]

> 0 (5.51)

and if llr > µM then we can simplify (5.51) further into:

llr− µM −
√

2Θ σM > 0
llr− µM
σM

>
√

2Θ . (5.52)

This inequation has a real solution only when Θ > 0, which is true if

llr > µM . This assumption is reasonable: we do not want to accept an access if

the LLR on the client model is smaller than the average LLR obtained over a

subset of impostors. Given this reasonable assumption we can see the standard

T-norm as a simplification of the T-norm using our new unified framework.

Experiments

The goal of these experiments is to show that the proposed framework can

indeed be used to perform T-norm or Z-norm while obtaining the same perfor-

mance as the original methods, and, gaining some insight about the underlying

assumptions.

Experimental Results

To verify the validity of our framework and the underlying assumptions, we

first compared the standard T-normalization and the version derived from the
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Figure 5.3. EPC curves on the NIST 2002 test set for the T-norm and unified

framework T-norm systems.

proposed framework. Figure 5.3 presents the results on the NIST database.

On this database, the T-normalization is important since speakers have been

recorded through different types of microphones. As can be seen, the two curves

are most of the time not significantly different. These results show that the

two approaches are equivalent. In fact they are perfectly equal if we remove

llr in (5.43) and (5.49). Note that in (Mariéthoz and Bengio, 2005), we draw

the same conclusions for the Z-normalization, but using an older version of the

NIST database.

T-norm for SVM

Similarly to GMM based systems, it can also be useful to have a channel com-

pensation procedure for SVM based systems. Channel compensation tech-

REF J. Mariéthoz and S. Bengio. A unified framework for score normalization techniques

applied to text independent speaker verification. IEEE Signal Processing Letters, Volume

12, 12, 2005. IDIAP-RR 04-62.



Score Normalization 81

niques try to compensate the difference of distortion produced by an acquisition

system: microphone-compression-transmission. Indeed, some of the benchmark

databases contain recordings using several kinds of channel transmission: land

line, GSM, etc. Solomonoff et al. (2004) have proposed a channel compensa-

tion method by mapping the input vector data to a high dimensional space

in order to perform the compensation in that space. This approach needs

data to estimate the mapping and is not a score normalization technique as

T-normalization.

If we want to perform T-norm using a score normalization approach, a naive

approach consists of:

fΘSi
(X)T−norm−naive =

fΘSi
(X)− µM

σM
(5.53)

where fΘSi
(X) is the output score of the SVM, while µM and σM are the mean

and the standard deviation estimated using M impostor models.

Unfortunately SVMs are not able to output probabilities and the unified

framework proposed before is thus not valid. Let us extend this framework to

SVMs. Starting from (5.31) and replacing llr by the output score of the SVM

and applying then the conditional probabilities law we get:

p(fΘSi
(X)|C,X, Si)p(C|X, Si) > p(fΘSi

(X)|C̄,X, Si)p(C̄|X, Si). (5.54)

It has been proposed by Platt (2000) that one can transform an SVM score

into probabilities by plugging it into a sigmoid function of the form:

1
1 + exp(−a fΘSi

(X) + b)
(5.55)

where a and b are parameters to be tuned. Note that one could tune a and

b separately for each speaker but we choose to tune them globally, as for the

threshold ∆ in (5.2). This allows to have an estimated posterior probability.

Using p(C|X, Si) = 1− p(C̄|X, Si) we obtain:

p(fΘSi
(X)|C,X, Si)

p(fΘSi
( X )|C̄,X, Si)

exp(afΘ(X) + b) > 1. (5.56)

REF A. Solomonoff, C. Quillen, and W.M. Campbell. Channel compensation for svm

speaker recognition. In Proceedings of Odyssey 2004: The Speaker and Language Recog-

nition Workshop, pages 57–62, 2004.

REF J. C. Platt. Probabilities for SV machines. In A. J. Smola, P. L. Bartlett, B. Schölkopf,

and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 61–74. MIT Press,

2000.
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Taking the log, we get:

log
p(fΘ(X)|C,X, Si)
p(fΘ(X)|C̄,X, Si)

+ afΘ(X) > −b ≈ ∆ . (5.57)

If we use the same hypothesis than those made for GMMs, we obtain:

fΘ(X)unified−T−norm = afΘ(X) +
(fΘ(X)− µM )2

2σ2
M

> ∆ . (5.58)

Note that (5.58) is valid only when fΘ(X) > µM . A reasonable thing to do

is to reject directly without any normalization a claimed speaker if its obtained

SVM output is smaller than the average of SVM outputs over a subset of

impostors. The consequence of this on the T-norm equation is to force the

threshold ∆ in (5.58) to be positive.

Experiments

We verified empirically this framework using the GLDS based SVM system de-

scribed in Chapter 2 on the NIST database. Table 5.2 and Figure 5.4 show the

results for SVMs without score normalization, with the naive T-normalization

approach given by (5.53) and with the new unified T-norm given by (5.58). The

results show that the naive approach degrades the performance significantly for

small values of γ of the EPC. The parameter a, here tuned to minimize the

EER (a = 0.2) on the development set should perhaps be tuned for each value

of γ in (3.14). As explained in (Grandvalet et al., 2005), the precision of the

probability estimator depends on the cost of each type of errors, Cost(FN) and

Cost(FP ) in (3.3). Moreover, the solution given by the unified approach cor-

respond to the naive solution when a = 0 and corresponds to the SVM without

score normalization solution when a→∞. Anyway, the solution found by the

unified T-norm corresponds approximatively to the minimum of the two other

systems.

Due to the computational cost of the T-normalization method and the rel-

ative small performance improvement, T-normalization will not be used for

SVM based systems in the following experiments.

REF Y. Grandvalet, J. Mariéthoz, and S. Bengio. A probabilistic interpretation of svms with

an application to unbalanced classification. In Advances in Neural Information Processing

Systems, NIPS 15, 2005. IDIAP-RR 05-26.
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Table 5.2. Results on the NIST test set for the T-norm and unified framework

T-norm systems

SVM No-norm T-norm Naive T-norm Unified

HTER [%] 11.06 10.54 9.11

95% Confidence ±1.05 ±0.81 ±0.85

Figure 5.4. EPC curves on the NIST test set for the T-norm and unified

framework T-norm systems.

5.4 Conclusion

In this chapter we tried to analyze state-of-the-art models used in speaker

verification. As the main purpose of this thesis is to use discriminant models,

we defined a general framework to use this kind of models. This framework

was originally presented in:
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CONTRIB J. Mariéthoz and S. Bengio. A kernel trick for sequences

applied to text-independent speaker verification systems. IDIAP-

RR 77, IDIAP, 2005

Before proposing new discriminant models, we first showed that a GMM

based system is discriminant and can be interpreted as a mixture of linear

classifiers. Several adaptation methods where compared and this comparison

was published in:

CONTRIB J. Mariéthoz and S. Bengio. A comparative study of adap-

tation methods for speaker verification. In International Conference

on Spoken Language Processing ICSLP, pages 581–584, Denver, CO,

USA, September 2002. IDIAP-RR 01-34

It shows that MAP adaptation is the best one and suggests that it can be

the best only because it makes the models more discriminant.

To interpret GMMs as mixtures of experts, we used an algorithm called

“synchronous alignment”, published in:

CONTRIB J. Mariéthoz, Dominique Genoud, Frédéric Bimbot, and

Chafik Mokbel. Client / world model synchronous alignement for

speaker verification. In 6th European Conference on Speech Com-

munication and Technology — Eurospeech’99, Budapest, Hungary,

September 1999

We also used a max approximation of the log likelihood ratio proposed in:

CONTRIB J. Mariéthoz and S. Bengio. An alternative to silence

removal for text-independent speaker verification. IDIAP-RR 51,

IDIAP, Martigny, Switzerland, 2003

Finally, score normalization is often used to compensate unmatched condi-

tions between data used to train the model and test accesses. A generalized

score normalization framework was proposed. It enlights the hypothesis implic-

itly done when T- and Z- normalization are used and can be used to develop

new normalization procedures. This work was published in:
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CONTRIB J. Mariéthoz and S. Bengio. A unified framework for score

normalization techniques applied to text independent speaker verifi-

cation. IEEE Signal Processing Letters, Volume 12, 12, 2005. IDIAP-

RR 04-62

This chapter thus provided some tools and intuitions to develop new dis-

criminant approaches either as complementary to GMMs or independently by

solving some problem specific to the speaker verification domain such as the

use of sequences. The next chapters will be dedicated to the presentation of

new discriminant models for speaker verification.
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