
7 Sequence Kernel Based Speaker Verifica-
tion

In the previous chapters, we proposed several new discriminant approaches

for text-independent speaker verification, including the use of SVMs operating

on some informations extracted from GMMs. In this chapter, we consider the

use of SVMs with sequences of feature vectors as inputs.

SVM based systems have been the subject of several recent publications

in which they obtain similar or even better performance than GMMs on sev-

eral text-independent speaker verification tasks. One of these systems, called

GLDS kernel, described in Chapter 2 and based on an explicit polynomial ex-

pansion (Campbell, 2002), has obtained good results during the NIST 2003

evaluation (Campbell et al., 2005), but suffers from a lack of theoretical in-

terpretation and justification. Moreover the approach precludes the use of the

so-called kernel trick, which is at the heart of the flexibility of SVM based

approaches. We thus propose in this chapter a more principled SVM based

speaker verification system that can make use of the kernel trick.

We also present some improvements of the new proposed kernel in order to

enhance the HTER performance, but also to make this new kernel usable for

long sequences.

The outline of this chapter goes as follows. The new proposed approach is

presented in Section 7.1, and is compared to similar approaches found in the

literature. A new Max operator based kernel is described in Section 7.2. A

smoothing version of the new kernel is then proposed in Section 7.5. Finally, in

REF W.M. Campbell. Generalized linear discriminant sequence kernels for speaker recogni-

tion. In Proc IEEE International Conference on Audio Speech and Signal Processing, pages

161–164, 2002.

REF W.M. Campbell, J.P. Campbell, D.A. Reynolds, E. Singer, and P.A. Torres-

Carrasquillo. Support vector machines for speaker and language recognition. Computer

Speech and Language, 2005.
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order to reduce the complexity of the Max operator based kernel, we describe

in Section 7.6 a solution using clustering techniques.

7.1 Mean Operator Kernel

SVMs have been designed to work on any type of data, as long as a kernel

K(Xi,Xj) comparing two examples Xi and Xj is defined. One specificity of

the speaker verification problem is that inputs are sequences. This requires,

for SVM based approaches, a kernel that can deal with variable size sequences.

A simple solution, which does not take into account any temporal information,

as in the case of GMMs, is the following:

K(Xi,Xj) =
1

TiTj

Ti∑
ti=1

Tj∑
tj=1

k(xti ,xtj ) (7.1)

where Xi is a sequence of size Ti and xti is a frame of Xi. We thus apply a

kernel k() to all possible pairs of frames coming from the two input sequences

Xi and Xj . This will be referred to in the following as the Mean operator

approach (as we are averaging all possible kernelized dot products of frames).

This kind of kernels has already been applied successfully in other domains

such as object recognition (Boughorbel et al., 2004). It has the advantage that

all forms of kernels can be used for k() and the resulting kernel K() respects

all Mercer conditions (Burges, 1998) which make sure that for all possible

training sets the resulting Gram matrix is positive semidefinite which makes

the problem convex. Given a set V of m vectors (points in Rn), the Gram

matrix G is the matrix of all possible inner products of V (definition taken

from http://mathworld.wolfram.com). Two forms of kernels k() are used

in this thesis: an RBF kernel (2.14) and a polynomial kernel (2.15). For the

polynomial kernel or order p, we fixed a and b to p!−
1
2p in order to avoid overflow

numerical problems for large values of p. The degree p of the polynomial

kernel and the standard deviation σ of the RBF kernel are thus the only hyper-

parameters tuned over the development set.

Comparison with GLDS Kernel Approach

Although the GLDS kernel based approach yielded good performance during

the NIST campaigns, it has some drawbacks. First no kernel trick can be

REF S. Boughorbel, J. P. Tarel, and F. Fleuret. Non-mercer kernel for svm object recogni-

tion. In British Machine Vision Conference, 2004.

REF C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data

Mining and Knowledge Discovery, 2(2):1–47, 1998.

http://mathworld.wolfram.com
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applied: it seems not possible to include the normalization vector 1√
ψn

in (2.32)

into it. And since we need to project explicitly the data into the feature space,

only finite space kernels are applicable (an RBF kernel could not be used for

instance).

The second main problem of this approach is related to the capacity of the

model (Vapnik, 2000). Empirically, we have seen that for various databases

the optimal value for C in equation (2.9) which governs the tradeoff between

a large margin and training errors, becomes ∞. This is in general due to

the use of an incorrect cost function. As often in speaker verification, only

few positive examples (even only one) are available. Furthermore, the ratio

between the number of positive and negative examples is very different between

the training and the test accesses. As C cannot be used to tune the capacity

of the system (since it always end up being ∞), we can rely only on the hyper-

parameters of the chosen kernel. For a GLDS based polynomial kernel the only

available parameter is the degree p of the polynomial, but this parameter is

hardly tunable: for respectively p =1, 2, 3 and 4 the resulting feature space

dimensions, when considering 33 dimensional input vectors, are 33, 595, 7 140

and 66 045. It is then difficult to correctly set the capacity. Moreover, as the

best value is empirically p = 3 for the considered databases, the dimension

seems quite huge if we consider that a few hundred examples only are used for

training.

Let us now consider again (7.1) and see how it relates to the GLDS approach.

Let us start by rewriting (7.1) as follows:

K(Xi,Xj) =
1

TiTj

Ti∑
ti=1

Tj∑
tj=1

φ(xti) · φ(xtj ) =
1
Ti

Ti∑
ti=1

φ(xti) ·
1
Tj

Ttj∑
tj=1

φ(xtj ).

Let us define k(xi,xj) of (7.1) as a polynomial kernel of the form (xi ·xj)p,
where p is the degree of the polynomial. In order to perform an explicit expan-

sion with the standard polynomial kernel we need to express the corresponding

φ() function (Burges, 1998) in a similar way to the GLDS expansion, given

in (2.32). Each value of the extended vector is thus given by:

φn(r1,r2,...,rd)(xt) =
√
cnx

r1
1 x

r2
2 ...x

rd

d ,

d∑
i=1

ri = p, ri ≥ 0 (7.2)

REF V. N. Vapnik. The nature of statistical learning theory. Springer, second edition, 2000.

REF C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data

Mining and Knowledge Discovery, 2(2):1–47, 1998.
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where cn =
p!

r1!r2!...rd+1!
, n ∈ {1, ..., Nf}

and each input frame of dimension d is augmented by a new coefficient equal

to 1 and Nf is the dimension of the expanded vector.

When we compare equations (7.2) and (2.32), the difference only lies in the

polynomial coefficients: each term is multiplied by a coefficient
√
cn in (7.2)

while the explicit expansion needs a normalization factor 1√
ψn

that disables the

kernel trick. We compared in Figure 7.1 the coefficient values for each term

in (7.2) with the normalization vector obtained by the explicit GLDS method

as estimated on Banca and Polyvar using a polynomial expansion of degree 3.

As can be seen, they look very similar. In fact, the performance obtained on

the development set of Polyvar are very similar, as shown by the DET curves

given in Figure 7.2 and Equal Error Rates provided in Table 7.1. Figure 7.2

and Table 7.1 also provide results using an RBF kernel to show that it now

becomes possible to change the kernel, even if, in that case, the best kernel was

still polynomial.

Figure 7.1. Coefficient values 1√
ψn

of polynomial terms in the GLDS kernel, as

computed on Banca and Polyvar, compared to the
√
cn polynomial coefficients

of equation (7.2).
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Figure 7.2. DET curves on the development set of the Polyvar database com-

paring the explicit polynomial expansion (GLDS based kernel), the principled

polynomial kernel and an RBF kernel (using the Mean operator).

Table 7.1. Comparison of EERs (the lower the better) on the development

set of the Polyvar database between the explicit polynomial expansion and

a principled polynomial kernel applying the Mean operator over all pairs of

frames. The second line provides a 95% confidence interval of the EERs while

the third line provides the resulting average number of support vectors for each

client model.

GLDS p = 3
Mean

p = 3

Mean

σ = 3

EER [%] 3.38 3.46 4.08

95% Confidence ±0.27 ±0.28 ±0.3

# Support Vectors 68 87 62

The drawback of (7.2), however, is the computational complexity for long

sequences. If S is the number of speakers, NP the number of positive examples

per speaker, NN the number of negative examples, and T the average number

of frames per example, then the training time complexity is given by:
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O(S T 2(NP2 + NN ·NP) + T 2 NN)

while the equivalent complexity for GLDS kernel would be the same except

that all T 2 would be replaced by T , hence becoming linear in the length of the

sequence instead of quadratic for (7.2).

Long sequences are thus very costly. This is not a problem for databases

such as Polyvar and Banca, especially, because negative examples are shared

between all clients and can thus be cached in memory. It is still unfortunately

intractable for other databases such as NIST, in its present form. The test

complexity for each access is O(NsvT 2) where Nsv is the number of support

vectors. Even in the test phase, computing scores for long sequences can be

too time consuming. This problem can probably be addressed using clustering

techniques and is treated in the following.

7.2 Max Operator Kernel

In equation (7.1), we can see that all frames of two sequences are compared

with each other. Does this make sense? Is it a good idea to compute a similar-

ity measure (which is what a kernel does) between frames coming from different

sub-acoustic units? The answer is probably “no”. Moreover, we expect a simi-

larity between two identical sequences to be maximum, which is not necessarily

the case with equation (7.1), since we take the average. To illustrate this, let

us create a sequence Xj containing exactly one frame taken from another se-

quence Xi that gives the maximum value of k(xti ,xtj ) in (7.1). In that case,

one can easily obtain K(Xi,Xj) ≥ K(Xi,Xi).

We thus propose here an alternative to taking the average over all frames.

We consider, for each frame of sequence Xi, the similarity measure of the closest

corresponding frame in sequence Xj . We thus propose to take a symmetric Max

operator of the form:

K(Xi,Xj) =
1
Ti

∑
ti

max
tj

k(xti ,xtj ) +
1
Tj

∑
tj

max
ti

k(xti ,xtj ).

The main idea is that, instead of comparing frames coming from different

acoustic events, we compare close frames only. Unfortunately, the resulting

function does not satisfy Mercer’s conditions anymore. In practice however,

even if a function does no satisfy Mercer’s conditions, one might still find that

a given training set results in a positive semidefinite Gram matrix in which
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case the training will converge perfectly well (Burges, 1998). Note that in

the following we will continue to call such a function a kernel even if it does

not satisfy Mercer’s conditions, as it is often done in the literature (see for

instance Burges (1998)).

Figure 7.3 illustrates the main idea of the Max operator based kernel. Each

subfigure represents all kernel evaluation values for two sequences from the

same speaker pronouncing the same word; the blue color represents low values

and the red color high values. Except for the silence part, we would thus like

the diagonal to be higher in Figure 7.3(a). Indeed, having exactly two same

accesses should produce a perfect diagonal. Figure 7.3(b) shows only the max

values. Even if the correspondence is not perfect, the approximation seems

good. Let us now compare the performance of the new Max operator based

kernel.

(a) Mean operator kernel (b) Max operator kernel

Figure 7.3. Gram matrices for two accesses of the female speaker F44 pro-

nouncing the same word “annulation”, extracted from the Polyvar database.

Figure 7.4 and Table 7.2 show that the Max approach outperforms the

standard one on the development set of Polyvar. The RBF kernel yields results

similar to the polynomial kernel when the Max operator is used. It is interesting

to note that now the optimal value is p = 1 and thus the sequence kernel

becomes a linear classifier. This is probably because the Max operator is more

appropriate. And this value is reasonable because the input space dimension

REF C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data

Mining and Knowledge Discovery, 2(2):1–47, 1998.
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of each sequence X is given by TiTjd which is already huge compared to the

number of examples. Thus we need very small capacity, and the plain dot

product seems sufficient.

Figure 7.4. DET curves on the development set of the Polyvar database for

Mean and Max operators for polynomial and RBF kernels.

Table 7.2. Results on the development set of the Polyvar database for Mean

and Max operators for polynomial and RBF kernels.

Mean

p = 3

Max

p = 1

Max

σ = 100

EER [%] 3.46 2.99 3.06

95% Confidence ±0.28 ±0.26 ±0.26

# Support Vectors 87 73 99

7.3 Non-Mercer Kernels

The empirical results show that the Max operator based kernel yields good

results (it will be also verified on other databases in the following), but it does

not satisfy the Mercer conditions. We want here to study the consequences of



Experimental Results on Polyvar and Banca Databases 105

that potential problem. We first verify empirically that our kernel produces

positive semidefinite Gram matrices. For the three NIST, Banca and Polyvar

databases, we computed the eigenvalues of the Gram matrices obtained using

the Max operator and various basic kernels (RBF, polynomial). All of them

were positive except in one case: using the Max operator based kernel with

polynomial kernel and p = 1 on Polyvar database. In that case, we obtained

about 50 negative eigenvalues for about 900 positives eigenvalues. This is,

nevertheless, one of the best kernel on the Polyvar database in term of perfor-

mance. The obtained solution is thus good even if we have not solved the real

SVM problem. Furthermore, using an RBF Max operator based kernel on the

same database yields similar results. One can think that the found solution is

close to the solution obtained if the eigenvalues would have been positive.

We also analyze the SVM implementation, here the Torch machine learning

library (Collobert et al., 2002), and in particular the optimization algorithm.

Solving the SVM problem is equivalent to solving a quadratic problem of the

form a x2 + b x+ c iteratively for two chosen examples of the training set (see

detail in Collobert (2004), p.55). Having a positive semidefinite Gram matrix

ensures that a kernel can be expressed by a dot product of φ() functions in some

space. Normally only two cases can happen: a > 0 and a = 0. If the Gram

matrix produces negative eigenvalues, then a can also be < 0. We verified this

in our specific problem and it was never the case: thus the algorithm works. In

order to prevent this for future training sets, we modified the implementation

in order to solve the problem even when a < 0. For more details on the

SVM optimization, the reader is referred to Collobert (2004). It is also known

that adding some constant to the diagonal of the Gram matrix, makes the

eigenvalues positive, which would be another way to be robust to this problem

of negative eigenvalues. However doing this, we cannot make sure that the

solution is close to the original problem.

7.4 Experimental Results on Polyvar and Banca Databases

We provide in this section performance results comparing the various speaker

verification systems over the test sets of both the Polyvar and the Banca

databases.

REF R. Collobert, S. Bengio, and J. Mariéthoz. Torch: a modular machine learning software

library. IDIAP-RR 46, IDIAP, 2002.

REF R. Collobert. Large Scale Machine Learning. PhD thesis, Université Paris VI, 28 June

2004.
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Polyvar

Figure 7.5 presents the performance on the test set of the Polyvar database.

Only the best systems (according to the development set) for Max and Mean

operator based kernels are presented. Complementary results are shown in

Table 7.3.

Figure 7.5. EPC curves on the test set of the Polyvar database for best Mean

and Max operators for polynomial and RBF kernels.

The Max approach (p = 1) significantly outperforms GMMs for all values

of γ with a confidence level greater than 99% most of the time. The Max

approach (p = 1) also outperforms most of the time the Mean based system

(p = 3) with a confidence level greater than 95%. The solution is also sparser

in terms of number of support vectors. The Max RBF kernel yields results

similar to the Max polynomial kernel. It is also interesting to note that the

optimal degree for the Max polynomial kernel is equal to 1.
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Table 7.3. Results on the test set of the Polyvar database for Mean and Max

operators for polynomial and RBF kernels (SV = Support Vectors).

GMM

N = 100

Mean

σ = 6

C = ∞

Mean

p = 3

C = ∞

Max

p = 1

C = ∞

Max

σ = 100

C = ∞

HTER [%] 4.9 4.59 4.47 3.9 4.21

95% Conf. ±0.34 ±0.33 ±0.32 ±0.31 ±0.32

# SV - 62 87 73 99

Banca

Figure 7.6 and Table 7.4 present the performance of several systems on the

Banca database. Once again, only the best systems for Max and Mean opera-

tors are presented.

Figure 7.6. EPC curves on test set of the Banca database for best Mean and

Max operator for polynomial and RBF kernels.
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Table 7.4. Results on test set of the Banca database for Mean and Max

operator for polynomial and RBF kernels (Support Vectors).

GMM

N = 200

Mean

σ = 8

C = ∞

Mean

p = 3

C = ∞

Max

p = 1

C = ∞

Max

σ = 225

C = 130

HTER [%] 2.72 8.71 6.41 5.98 4.70

95% Conf. ±1.42 ±2.4 ±2.08 ±2.03 ±1.78

# SV - 18 27 42 17

The first conclusion is that, for this database, the GMM based system out-

performs all the SVM based systems. The particularity of this database is the

unmatched conditions. Three recording conditions are used in this database:

“controlled”, “adverse” and “degraded”. Only one “controlled” training ses-

sion per speaker is available and all conditions are used during the test. SVMs

might be less robust than GMMs for unmatched conditions. Note however that

(while this is not shown here) this difference is smaller on the development set

than on the test set.

The Max approach (σ = 225) outperforms most of the time the Mean

(p = 3) approach but the confidence level of the difference is low. This database

is unfortunately too small to gives statistically significant results. However, it

is interesting to note once again that the Max operator solution is sparser (in

terms of the number of support vectors) than the Mean operator solution. The

optimal C value is not ∞ for the Max RBF kernel so in some cases it can

still be interesting to tune this parameter. Empirically most of the time, the

optimal value of the C parameter remains ∞. It is probably due to the SVM

criterion: it has been designed to minimize the classification error rate, which

is not optimal in our case and should be modified in order to deal with highly

unbalanced data. This problem has been investigated recently by Grandvalet

et al. (2005).

Note also that, contrary to the Polyvar database, the optimal kernel is now

the RBF kernel. This shows that it is important to provide an SVM approach

where the kernel can be chosen according to the database, which was not the

case in (Campbell, 2002).

REF Y. Grandvalet, J. Mariéthoz, and S. Bengio. A probabilistic interpretation of svms with

an application to unbalanced classification. In Advances in Neural Information Processing

Systems, NIPS 15, 2005. IDIAP-RR 05-26.

REF W.M. Campbell. Generalized linear discriminant sequence kernels for speaker recogni-
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7.5 Smoothing the Max Kernel

Figure 7.3 shows that the maximum found by the Max operator based kernel

is often in the diagonal of the Gram matrix for two same words, but it is still

noisy. For text dependent speaker verification systems, a dynamic time warping

(DTW) can be used, but it is not applicable in the context of text independent

speaker verification. A simple solution consists in putting some local temporal

constraints by applying a smoothing window that takes into account the frame

context, as follows:

K(Xi,Xj) =
1
Ti

∑
ti

max
tj

H−1∑
h=0

k(xti ,xtj+h
) +

1
Tj

∑
tj

max
ti

H−1∑
h=0

k(xti+h
,xtj )

whereH represents the size of the smoothing window and is an hyper-parameter

to tune using a development set.

Figure 7.7 shows the result of the smoothing procedure. One can see that

smoothing yields max values that are closer to the diagonal, which is what we

expect when the speaker pronounces the same sentence.

(a) Max operator based kernel.
(b) Smoothed Max operator based kernel

with H = 4.

Figure 7.7. Gram matrices, Max and smooth Max operator based kernel, for

two accesses of the female speaker F44 pronouncing the same word “annula-

tion”, extracted from the Polyvar database.

tion. In Proc IEEE International Conference on Audio Speech and Signal Processing, pages

161–164, 2002.
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Figure 7.8 and Table 7.5 show the results of the new smoothing kernel

compared to the Mean and Max operator kernels. The new smoothing kernel

outperforms statistically significantly the Mean operator kernel for all values of

γ and outperforms statistically significantly the Max operator kernel for some

value of γ. Note that the smoothing method gives also a smaller number of

support vectors.

Table 7.5. Results on the test set of the Polyvar database for Mean, Max and

smooth Max based kernels.

Mean

p = 3

C = ∞

Max

p = 1

C = ∞

Smooth Max

p = 1 C = ∞
H = 4

HTER [%] 4.47 3.9 3.40

95% Confidence ±0.32 ±0.31 ±0.28

# Support Vectors 87 73 48

7.6 Clustering Techniques

Even if the new proposed kernels seem promising, the underlying computa-

tional complexity makes their use not realistic for long sequences such as those

of the NIST database. Let us remind the non-symmetric Max operator based

kernel:

K(Xi,Xj) =
1
Ti

∑
ti

max
tj

k(xti ,xtj ).

For each kernel K(), we have to compute a local kernel k() between all Ti
frames of the first sequence Xi and all Tj frames of the second sequence Xj .

Hence, in order to compare two sequences, TiTj local kernel evaluations are

needed. In order to avoid to compute the max over all the Tj frames for a

given xi frame of the first sequence, we can try first to cluster the frames of the

two sequences and search the max only into a subset of frames of Xj that share

the same cluster as xi. Unfortunately, this approach does not work empirically.

In our preliminary experiments, neither using K-Means clustering nor GMM

clustering, the results were good. Our explanation is that those methods are

hard clustering techniques (a frame belong to only one cluster) and the hard

constraint is too strong.
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Figure 7.8. EPC curves on the test set of the Polyvar database for best Mean,

Max and smooth Max operators for polynomial kernels.

In order to relax the hard constraint, we propose to use a soft clustering

model based on HMM contextual posterior values, as proposed by (Ketabdar

et al., 2005), and often called gamma values in the literature. They represent

p(qt = s|X), the posterior probability of being in HMM state s at time t, given

the whole sequence X. Note that these posteriors can be efficiently estimated

using a well-known recursion used in the EM training algorithm for HMMs.

Figure 7.9 shows the contextual posterior (hereafter simply called posterior)

values for an HMM of 50 fully connected states, with one Gaussian per state.

Blue color represents low values and high values are represented by red color.

We can see that the phoneme /a/ and /la/ are represented by the same state

(number 7). It is also interesting to note that the posterior values are peaky,

short time stationary and smooth.

REF H. Ketabdar, J. Vepa, S. Bengio, and H. Bourlard. Developing and enhancing posterior

based speech recognition systems. In 9th European Conference on Speech Communication

and Technology, Eurospeech-Interspeech, 2005.
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Figure 7.9. Posterior values for access “f4425w14” of Polyvar database.

Let us now describe an algorithm that uses posterior values to reduce

the complexity of the Max operator based kernel. Let us consider the non-

symmetric Max operator based kernel, but instead of comparing a given xti to

all frames of Xj , we want to consider only a subset of Xj , as follows:

K(Xi,Xj) =
1
Ti

∑
ti

max
tj∈{t}∗

k(xti ,xtj )

where {t}∗ is a subset of index frames of the sequence Xj given by:

{t}∗ = arg nbest
{t}Nb

1

p(qt = s∗(ti)|Xj)

where nbest{t}Nb
1

is a new operator that returns the Nb best values with respect

to the posterior values of the state s∗(ti), computed as follows:

s∗(ti) = arg max
s
p(qti = s|Xi).

Figure 7.10 shows the Gram matrix. On Figure 7.10(b), all parts of the

graphic with the dark blue color will not be considered by the kernel evalua-

tions. We can see that the diagonal values are kept most of the time.
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(a) Mean kernel.
(b) Mean kernel with posterior based cluster-

ing approach (50 states, Nb = 10). More than

80% of the kernel evaluations are saved.

Figure 7.10. Gram matrices for two accesses (“f4413w06” and “f4425w14”)

of the female speaker F44 pronouncing the same word “annulation”, extracted

from the Polyvar database.

In order to perform the clustering, we need to train an HMM, here using

the world model population without using any transcription; the training is

completely unsupervised with the EM procedure maximizing the data likeli-

hood. All the hyper-parameters are tuned in order to minimize the ERR on

the development set. The HMM used to perform NIST experiments has 50

states with only one Gaussian per state and a full transition probability ma-

trix. The best value for Nb is 200. In fact, the error is quite stable from 100.

For simplicity reason, the feature extraction procedure used to enroll the HMM

is the same as the one used for the SVMs; this can be sub-optimal in the sense

that these features should be able to discriminate between phonemes and not

between speakers.

We tried to add a minimum duration constraint by replicating each HMM

state, but it did not yield any improvement. Further analysis are needed to

explain this, as intuitively the minimum duration should improve the results:

we have seen that smoothing the kernel by putting local temporal constraints

helps the system and thus we had the same hope for the minimum duration

constraint.

Figure 7.11 shows the results for a Max operator based kernel without the

use of the posterior clustering approach (needs several weeks to run) and with
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the posterior clustering approach (needs less than 2 days to run). We can see

that the approximation is reasonable and gives similar results. These results

have been estimated on a previous campaign of the NIST database.

Figure 7.11. Results on the development set of a previous version of the NIST

database: Max operator based kernel p = 1 with and without posterior based

approximation.

7.7 Experimental Results on the NIST Database

Due to Max operator kernel complexity, it was too costly to run this new

kernel on the NIST database. Using the posterior clustering approach, we can

presents the results for the NIST database.

Figure 7.12 shows the results for the GLDS based kernel approach with

p = 3 and a Mean operator polynomial kernel with p = 3. Even if they are

comparable for most values of γ, we can see that they are not really equivalent

and the polynomial approach outperforms the GLDS based kernel for some

values of γ. As it does not need the computation of a normalization vector
1√
ψn

in (2.32), this approach seems preferable. Note that the Mean operator

kernel can be computed with the same complexity as the GLDS approach for

a polynomial form.

The Max operator based kernel is compared to the Mean operator based
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Figure 7.12. Results on the test set of the NIST database: GLDS Kernel p = 3

vs Mean operator Kernel p = 3.

kernel on Figure 7.13 and Table 7.6. Unfortunately, the improvement observed

on the two Banca and Polyvar databases does not appear on the NIST database

for all values of γ. Moreover, for small values of γ the Max operator based

kernel is worse than the standard Mean operator kernel. Even if it needs deeper

analysis to be explained, intuitively the longer the sequence is, the bigger the

risk of confusion is when the max is taken. It can thus be important to add

some local temporal smoothing procedure. For example, one can take the N

best frames instead of the single best as with the Max operator based kernel.

One can also use the HMM posterior values, as in Figure 7.9. We can see that

these values cut the sequence into short segments. One can use this information

to create a new kernel that compares segments instead of frames.

It is interesting to note that now the C smoothing parameter has a positive

influence. It reduces drastically the number of support vectors from 135 to 33

and Figure 7.14 shows that it reduces the HTER and also the DCF for the

costs used by the NIST campaign: γ ≈ 0.909. It is also interesting to note that
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Figure 7.13. Results on the test set of the NIST database: Max operator RBF

Kernel σ = 10 using posterior based approximation and Mean operator Kernel

p = 3.

Table 7.6. Results on the test set of the NIST database for Mean and Posterior

based Max operators for polynomial and RBF kernels(SV = Support Vectors).

GMM

N = 100

GLDS

p = 3

C = ∞

Mean

p = 3

C = ∞

Max

p = 1

C = ∞

Max

σ = 10

C = 0.5

HTER [%] 8.68 11.06 10.48 11.01 9.12

95% Conf. ±0.84 ±1.05 ±1.03 ±1.04 ±0.72

# SV - 38 40 110 33

in that case the RBF kernel outperforms the polynomial kernel.
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Figure 7.14. Results on the test set of the NIST database: Max operator RBF

Kernel σ = 10 using posterior based approximation for two different values of

C: ∞ and 0.5.

7.8 Conclusion

We have proposed in this chapter, a new method to use SVMs for speaker

verification. It allows the use of all kinds of kernels, generalizes the explicit

polynomial approach and outperforms most of the time SVM based state-of-

the-art approaches for the tested databases.

We have also proposed a new Max operator instead of averaging the kernel

values over all pairs of frames. It makes more sense and outperforms the

standard approach. Unfortunately it does not satisfy the Mercer conditions but

still converges very well for the studied databases. This work was published

in:



118 Sequence Kernel Based Speaker Verification

CONTRIB J. Mariéthoz and S. Bengio. A kernel trick for sequences

applied to text-independent speaker verification systems. In Sec-

ond Workshop on Multimodal User Authentication, MMUA, 2006.

IDIAP-RR 05-77

A longer version of this paper has been submitted to the Patter Recognition

journal.

We have also proposed a smoothing method to enforce local temporal con-

straints and show that it improves statistically significantly the baseline system.

The main drawback of our proposed method is the large underlying com-

plexity for long sequences. We thus proposed new clustering methods based

on HMM contextual posterior values in order to make the Max operator based

kernel usable with long sequences. We performed some experiments on the

NIST database and showed that the approximation was good and reduced the

computing time from several weeks to less than two days. Unfortunately, while

the Max operator based kernel outperformed the Mean operator based kernel

for both Banca and Polyvar database; it was not the case for all possible deci-

sion thresholds on the NIST database. On the other hand, it allows for the first

time the use of infinite dimensional kernels on the NIST database and opens

some research directions to create new sequence kernels. In particular, we think

that it should be interesting to consider methods to align speech segments using

contextual posterior values in order to create a new sequence kernel.

We have also shown that the SVM capacity parameter C influences the

results using the Max operator, which was not the case with the approach

proposed by Campbell (2002). We still need to understand better how to

modify the SVM criterion to properly handle unbalanced data, as is often the

case in speaker verification tasks. A serious indicator of the problem is that

using a polynomial kernel with a Max operator, the optimal degree is always

equal to 1. Thus we hope to be able to reduce the capacity by being able to

properly tune the C hyper-parameter.

REF W.M. Campbell. Generalized linear discriminant sequence kernels for speaker recogni-

tion. In Proc IEEE International Conference on Audio Speech and Signal Processing, pages

161–164, 2002.


