
8 A New Perspective: Working on the Dis-
tance Measure

Speaker verification is a highly unbalanced two-class classification problem

and it might be important to consider specific training criteria for such cases.

Gradient based models (such as Multilayer Perceptrons) can easily accommo-

date various possible training criteria adapted to unbalanced datasets, and

thus can be good candidates to solve this problem. Unfortunately, when using

a large margin approach, the number of training iterations needed to converge

to a good solution is huge. This has also been observed in Collobert and Bengio

(2004). SVMs have usually faster convergence rates, so we will instead consider

unbalanced criteria for SVMs.

After analyzing two already proposed criteria for this problem (Lin et al.,

2002) and (Grandvalet et al., 2005), we note that they are useless in our

case. Indeed, empirically we observed that for all SVM based sequence kernels

that give reasonable performance, and for all client models, the problem is in

fact linearly separable in the feature space and we can show that for such a

problem these unbalanced criteria have no effect. Moreover, in the separable

case the standard SVM solution is good because only examples in the margin

are considered.

At the opposite, another specific speaker verification problem, which for us

is more important, is addressed here: the intra-impostor distance distribution is

different than the intra-client distance distribution. We thus propose to modify
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the SVM kernel by assuming a Gaussian noise on negative examples. Starting

from a principled approach, and after some empirical modification, we show

that the new system outperforms the baseline system.

The outline of this chapter goes as follows. In Section 8.1, we present

the known unbalanced class criteria for SVMs and show they are useless for

separable problems. Section 8.2 is dedicated to a new similarity measure that

takes into account the difference between the intra-impostor and intra-client

distance distributions.

8.1 Unbalanced SVM Criteria

SVMs are known to perform well in terms of misclassification error, but they

also have been recognized to provide skewed decision boundaries for unbalanced

classification losses, where the losses associated with incorrect decisions differ

according to the true label. The mainstream approach used to address this

problem was proposed in (Lin et al., 2002) and consists in using different costs

for positive and negative examples using two smoothing parameters C+, C−

instead of a single C as in (2.9). This solution was used, for instance, in

Chapter 6 and is given in (6.5).

Another solution, proposed in Grandvalet et al. (2005) is based on a prob-

abilistic interpretation of SVMs. The cost to optimize now becomes:

arg min
(w,b)

‖ w ‖2

2
+ C

 ∑
{i|yi=1}

[− log(P0)− (1− P0)(f(xi) + b)]+ (8.1)

+
∑

{i|yi=−1}

[− log(1− P0) + P0(f(xi) + b)]+


where P0 = C(FP)

C(FP)+C(FN) , C(FP) is the cost of a false positive and C(FN) is

the cost of a false negative.

Even if these two approaches give good results on standard machine learning

databases, as shown in (Grandvalet et al., 2005), they have no positive effect in

our case. Indeed, empirically we can observe that for all sequence kernels that

provide good performance, the problem is separable: all the training examples

are well classified. It seems reasonable: the feature space dimension is greater
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than the number of training examples. Moreover most of the time the opti-

mal value for C tends to ∞ and thus the criterion does not tolerate any error.

This is probably because it cannot make an error on positive examples: they

are too few; and it can neither tolerate an error on a negative example: the

coverage of the training negative examples is not good enough. Indeed, each

negative example can cover its own variability but cannot cover the future test-

ing negative examples (other impostors). As the training positive and negative

examples do not correspond well enough to the test set, it can be interesting

to use prior knowledge in the kernel: for instance we expect the variance of the

intra-impostor distance distribution to be larger than that of the intra-client

distance distribution.

8.2 Class Dependent RBF Kernel

When a two-class classification problem is separable, we can admit that a

solution maximizing the margin is a good idea even if the problem is unbal-

anced. Indeed an SVM considers only examples in the margin and ignores other

examples. Hence, the standard SVM criterion can be good also for separable

unbalanced class problems. It still remains that, in the case of speaker verifi-

cation, the distribution of the distance between two impostor accesses is larger

than the client distance distribution: impostors are individual speakers and

thus the intra-impostor distribution is more similar to the inter-class distance

distribution than the intra-client distribution. In this case, it can be a good idea

to change the kernel in order to make the negative examples closer. In other

words, a negative example should cover its own variability (same speaker), but

also unseen negative examples (other impostors).

Client Distribution

Training Impostor Distribution

Testing Impostor Distribution

(a) Normal

Client Distribution

Training Impostor Distribution

Testing Impostor Distribution

(b) Enlarged

Figure 8.1. Client, training and testing impostor distributions.
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Figure 8.1 shows that enlarging the negative example distribution, for in-

stance by using a larger σ value for intra-negative RBF kernel evaluation, in-

creases the coverage of the unseen impostor examples.

Vapnik (2000) proposed the use of vicinal risk minimization to learn a

decision function over distributions instead of points. One of several solutions

he proposed is the soft vicinity function that uses a kernel over distributions.

The main idea is to assume a Gaussian noise over each negative example. Using

an RBF kernel with a Gaussian noise distribution, we have:

K(xi,xj) =
1

2πσiσj

∫ ∫
exp

{
− (x− x′)2

2σ2
− (x′ − xi)2

2σ2
i

− (x− xj)2

2σ2
j

}
dx dx′

(8.2)

where σ is the RBF kernel hyper-parameter, σi the noise standard deviation

of example xi and σj the noise standard deviation of example xj .

Vapnik (2000) then showed that (8.2) can be rewritten as:

K(xi,xj) =
(

1 +
σ2
i

σ2
+
σ2
j

σ2

)(− d
2 )

exp
{
− (xi − xj)

2(σ2 + σ2
i + σ2

j )

}
(8.3)

where d is the dimension of the input vector.

Let us now consider a Gaussian noise for the negative examples only, with

variance τσ2 where τ is a constant to tune, we obtain:

K(xi,xj) =


exp− (xi−xj)

2

2 σ2 if yi = yj = 1

(1 + τ)(−
d
2 ) exp− (xi−xj)

2

2 σ2(1+τ) if yi 6= yj

(1 + 2τ)(−
d
2 ) exp− (xi−xj)

2

2 σ2(1+2 τ) if yi = yj = −1.

(8.4)

In (8.4) we have a kind of RBF kernel with larger standard deviation if

yi = yj = −1 than otherwise. This is what we expected: make the intra-

negative distance smaller. Unfortunately, the constant (1 + 2τ)(−
d
2 ) has the

inverse effect and decreases faster that the exponential term. Moreover Vapnik

(2000) said nothing about how to choose σ for a new test point (for which the

class is obviously not known).

Even if this is not principled, we would like to propose some simplifications

to Vapnik’s approach, as follows:

K(xi,xj) =


exp− (xi−xj)

2

σ2
++

if yi = yj = 1

exp− (xi−xj)
2

σ2
+−

if yi 6= yj

exp− (xi−xj)
2

σ2
−−

if yi = yj = −1

(8.5)
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with

σ++ = σ+− = σ+ (8.6)

σ−− = σ− (8.7)

σ− > σ+ (8.8)

where σ− and σ+ are hyper-parameters to tune. The differences between (8.4)

and (8.5) are that we remove the constants involving the dimension of the

data d, and choose the same value for σ++ and σ+−; in fact when we have only

one positive example to train the model, any value for σ++ yields the same

kernel value (equal to one). During test, we tried empirically several values of

σ between σ+ and σ− and found that the best value is σ+ for both Banca and

Polyvar databases.

Figure 8.2 shows that the vicinity based method outperforms the Max op-

erator based RBF kernel on the development set of the Polyvar database. This

is also confirmed on the test set on Figure 8.3 and Table 8.1. The two models

are statistically significantly different for most value of γ.

Figure 8.2. DET curves on the development set of the Polyvar database for

the best σ, σ+, σ− Max RBF kernel.

We also performed the same experiments on the Banca database and draw

the same conclusion as shown in Figure 8.4, Figure 8.5 and Table 8.2. Even
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Table 8.1. Results on the test set of the Polyvar database for Mean and Max

operators for polynomial and RBF σ and σ+, σ− kernels.

GMM

Ng = 100

Mean

p = 3

C = ∞

Max

σ = 100

C = ∞

Max σ+ = 92

σ− = 100

C = ∞

HTER [%] 4.9 4.47 4.21 3.59

95% Confidence ±0.34 ±0.32 ±0.28 ±0.32

# Support Vectors - 87 99 76

Figure 8.3. EPC curves on the test set of the Polyvar database for the best σ,

σ+, σ− Max RBF kernel.

if on this database the results are not statistically significantly different due

to the size of this database, the effect seems positive. Note also that, for this

database, we are still far from the GMM based system, on the test set as seen

in Table 8.2 and Figure 8.5 but it seems not be the case on the development

set as seen in Figure 8.4.
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Figure 8.4. DET curves on the development set of the Banca database for the

best σ, σ+, σ− Max RBF kernel and GMM based system.

Table 8.2. Results on the test set of the Banca database for Mean and Max

operators for polynomial and RBF σ and σ+, σ− kernels.

GMM

Ng = 200

Mean

p = 3

C = ∞

Max

σ = 225

C = 130

Max σ+ = 125

σ− = 225

C = 130

HTER [%] 2.72 6.57 4.7 4.11

95% Confidence ±1.42 ±2.1 ±1.78 ±1.66

# Support Vectors - 27 17 13

8.3 Conclusion

In this chapter, we considered the unbalanced class problem underlying the

speaker verification task. We tried to use modified criteria for SVM in order

to deal with unbalanced datasets and observed that they have no effect on

separable problems, which is the case for our speaker verification experiments.

Indeed, we enlight the fact that for separable problems, the standard SVM

criterion gives a good solution even with highly unbalanced task.
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Figure 8.5. EPC curves on the test set of the Banca database for the best σ,

σ+, σ− Max RBF kernel and GMM based system.

We proposed, instead, to work on new similarity measures. The intra-

impostor distance distribution is larger than the intra-client distribution due

to the problem itself. We thus proposed, based on the idea of the vicinity

function proposed by Vapnik (2000), to add a Gaussian noise over the negative

examples only. Unfortunately, we had to apply some empirical simplification

in order to make this new approach feasible, which made it less principled.

However, this suggests to modify the standard similarity measure, for example

by adapting the kernel (Kwok and Tsang, 2003) or by learning a similarity

measure, as done by Chopra et al. (2005) for face verification.
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