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Chapter 5

Estimating the Value of Travel

Time Savings
-Application to the Freight Transport in France-

Abstract

In this study we apply the Logit, the Mixed Logit and the Bayesian Mixed

Logit models to estimate the value of time in freight transport in France. We

discuss the importance of the value of time and its particular role in the case

of private motorways. We present the econometric models currently used to

estimate it, giving a special attention to the Bayesian procedures, since it is a

relatively new method with only a few results in the literature. We also discuss

the main challenges in estimating the value of travel time savings. We then

describe the revealed preference survey we realized, including 1027 vehicles in

order to study the trade-o� between the free road and the tolled motorway.

Results show that the Bayesian procedures represent an interesting alternative

to the optimization problems the maximum likelihood faces. Also, in line with

recent works, we �nd that using a constant value, representative of an average,

can lead to tra�c overestimation. Finally, we found average values around e45

per vehicle and per hour, suggesting that the current French standard value

should be reviewed upwards.

147
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5.1 Introduction

The value of travel time savings (VTTS) is at the heart of transport projects

and transport policies evaluation. It plays a central role in the socio-economic

evaluation since time savings usually are the dominant factor in the users'

bene�t. Despite the importance of the freight transport in the economy, its

representativeness in terms of volume of tra�c and its contribution for the

socio-economic bene�ts of a new motorway, relatively few studies, in France

or abroad, are devoted to the study of the value of time in freight transport.

In order to estimate the welfare produced by the time saving generated by

a new infrastructure, econometric models were developed to estimate the value

of time. These models are mainly based on discrete choices evaluation of the

trade-o� between time and money. In models of choice among discrete alterna-

tives, the assumption is made that individual choices are based on perceptions

of the relative characteristics of the alternative options; in this way, implicit

equivalences are subjectively established. This subjective value of time has

concentrated the attention of researchers and policymakers within the indus-

trialized countries. Given this importance, one would like to achieve estimates

of subjective value of time that are robust and ideally independent from the

functional form of the models used to estimate them (Gaudry et al., 1989).

With the introduction of private �nance (and tolling) in transport, will-

ingness to pay is applied to estimate actual out-of-pocket money and then

the optimal toll levels and the �nancial pro�tability of a project. So, in re-

cent years, an increasingly important application of discrete choice models has

been to calculate the potential revenue for tolled roads, and networks with

user charges, which o�er higher speeds at a higher price. Here the important

issue is not the hypothetical willingness to pay, but the actual money that will

be handed over. It changes focus from hypothetical to bankable value of time

(Hensher and Goodwin, 2004).

In this context, one of the main issues regarding the value of time is its dis-

tribution over the population. Heterogeneity in population comes from tastes,

revenue, journey characteristics, distance and purpose. In freight transport,

it will depend also on the �rm's market and �nancial structures, on the char-

acteristics of the goods, own account or hire transport, among other factors.



5.1. Introduction 149

While in project evaluation the VTTS is usually taken as constant, for equity

reasons (but this practice varies according the current national recommenda-

tion, and this social value usually di�er from those issued from econometric

estimations, representing a more �social� value of time), in revenue forecasts,

and so for toll setting, the assumption of a constant VTTS may be very re-

strictive and lead to signi�cant forecast errors. In fact, if an average value,

virtually representative of a symmetric distribution, is taken as representa-

tive of a skewed distribution, there will be tendency to overestimate revenue.

As a consequence, the value of time represents a main source of uncertainty.

Moreover, in the VTTS modelling process, data quality, model structure and

statistical or behavioural hypothesis play together; in this way VTTS may be

used as a strategic variable, allowing to �adjust� the tra�c and revenue levels.

Logit is by far the most applied model in discrete choice analysis. The

logit model derives from the random utility model, which separates the total

utility into deterministic and random components, under the assumptions of

independent and identically distributed Gumbel disturbances. Its popularity

is due to the fact that the formula of choice probabilities takes a closed form

and is readily interpretable with good results related in literature1. In this

model, heterogeneity, unobserved attributes and measurement errors are cap-

tured by the random disturbance and the coe�cients of the utility function are

�xed, leading to a constant value of time, representative of a virtual average

individual.

Advances in simulated estimation techniques have enabled analysts to use

increasingly complex models that allow one to de�ne broader behavioural pat-

terns, overshadowing the classic Multinomial Logit (Train, 2003). In the ran-

dom coe�cient random utility model, both coe�cients and error term are

represented by some PDF (Probability Distribution Function), this model is

usually called Mixed Logit (ML) because it can be viewed as a logit with mix-

tures. ML is a high �exible model than can approximate any random utility

model, and it is considered the most promising discrete choice model currently

available (Hensher and Goodwin, 2004); it has been known for many years but

has only become applicable with the development of simulation techniques.

This model do not presents the restrictive properties of logit and allows for a

1probably accompanied by less good ones, less released
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di�erent PDF for each parameter, but results are also sensitive to the speci�-

cation of the PDF shape. However, in practice, many di�culties challenge the

application of this model, as the choice of the distribution, the starting values

and convergence problems in maximum simulated likelihood.

Furthermore, the introduction of prior knowledge is intrinsic even to the

classic analysis. First, the analyst usually has some priors about the result (i.e.

one should expect that the value of travel time to be positive and to lay within

a reasonable set) and second, the set of hypothesis and parameters need to the

estimation of mixed logit models like the form of the distributions, eventual

constraints and the starting values indirectly represent prior hypothesis.

Bayesian estimations have some strong advantages compared to the classi-

cal techniques; they allow for distributed coe�cients but the estimation does

not require any maximization, rather, draws from the posterior are taken un-

til convergence is achieved, avoiding convergence problems and sample sizes

necessary to achieve the convergence are substantially smaller. Moreover, they

can properly integrate a priori knowledge on the parameters.

In order to determine the value of time in freight transport in France,

an important but misunderstood parameter in project evaluation, and study

the impact of model speci�cation a revealed preference survey was conducted,

interviewing 1027 truck drivers about their origin, destination and freight char-

acteristics. The survey was conducted in four points; in two tolled motorways

and their respective free parallel roads in the north-west of France. This con�g-

uration allows to the analysis of the trade o� between rapid and more expensive

links, and slower free roads.

In this chapter we discuss a number of issues related to the estimation

and the interpretation of results in practical estimations of the value of time in

transport (i) we analyse the role of model speci�cation in the VTTS estimation,

(ii) we identify sources of systematic and random taste variations; (iii) we

propose a comparison of the di�erent methods without using relevant prior

information; (iv) we measure the bene�t of integrating a prior distribution of

VTTS and �nally (v) we provide a robust estimation of the value of travel time

for the freight transport in France. Results show that Bayesian estimations

based on a prior knowledge leads to more sound and robust results; furthermore

we �nd that values used currently in France should be reviewed upwards.
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The contributions of this study are twofold. First, at the theoretical level,

we discuss the importance of estimating distributed value of time in evaluating

the willingness to pay for toll roads and show the impact of model structure

on the evaluation of the real willingness to pay. Second, at the practical level,

we estimate the value of time in freight transport in France and show the

sensibility of estimations with respect to the model.

The rest of the chapter is organized as follows. Section 2 brie�y discusses

the notion and the importance of the value of travel time as well as the scarcity

of empirical results in freight transport. Section 3 presents the most used

econometric models applied to the VTTS estimation. Section 4 presents the

Bayesian procedures and its application to estimate discrete choice models.

Section 5 discuss some challenges in estimating the value of travel time savings.

Section 6 presents the survey conducted for this study. Section 7 presents the

econometric results and compares the di�erent models. Section 8 discusses the

results and section 9 concludes the chapter.

5.2 The Value of Time in Transport

The willingness to pay for a unit change in a certain attribute can be computed

as the marginal rate of substitution (MRS) between income and the quantity

expressed by the attribute, at constant utility levels (Gaudry et al., 1989).

The concept is equivalent to computing the compensated variation (Small and

Rosen, 1981), as one usually works with linear approximation of the indirect

utility function. Thus, the point estimates of the MRS represent the slope of

the utility function for the range where this approximation holds. Furthermore,

as income does not enter in the truncated indirect utility function, the MRS

is calculated with respect to minus the cost variable (Jara-Diaz, 1990). In this

way, the WTP in a linear utility function simply equals the ration between the

variable of interest and the cost variable. The willingness to pay to save time

is usually called the value of time, or, related to the travel time, the value of

travel time savings, VTTS.

The value of travel time is certainly the most important number in trans-

port economics. Time savings use to account for the main part of the socio-

economic bene�t of a new infrastructure. Moreover, it allows the estimation of
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the market share of a new infrastructure or service and the estimation of the

optimal pricing.

The distribution of the VTTS over the population is a fundamental issue.

We can classify heterogeneity in the population in two groups, systematic and

random. Systematic variations depend on socio-economic and trip speci�c

characteristics. They are estimated either by segmenting the population of by

interacting variables. This heterogeneity left is due to factors which can not

be observed or are di�cult to measure. In these cases, this heterogeneity can

take form of a random parameter.

The proportion of a population who will choose to pay a toll t is given by

the proportion whose value of the time saved is greater than the toll. The an-

alyst, according to taste, convenience and internal evidence, will select among

a number of appropriate analytical distributions in order to �nd a satisfac-

tory representation of the �true� empirical distribution. The number of people

whose value of time savings exceeds the toll charged, who will therefore pay

it is then the integral, from toll price to in�nite, of that distribution. This is

then the measure of revenue to be received by the charging agency. In the case

of a symmetric distribution, e.g. normal, in general representing the distribu-

tion by its mean will be able to produce the correct revenue. In the case of a

substantially skewed distribution (e.g. lognormal) the average will not be in

the centre of the distribution, and there will be fewer people in the population

actually ready to pay the toll. In this situation revenue will be overestimated

for low toll levels.

Figure 5.1: Comparison of VTTS distributions.

Hensher and Goodwin (2004) argue that �nancial institutions have two
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interests in their negotiations with public agencies on a public-private partner-

ship. First, there is an interest in the best and most reliable possible estimate

of the expected revenue. Second, there is interest in �gures that strengthen

their bargaining position in relation to the case for the scheme to go ahead at

all, and on what basis of risk apportionment.

Consider the case where there is a well-established convention, used by the

public agency for many years, to represent the distribution of VTTS by the

average, partly for reasons of adequacy for purpose in previous applications,

and partly because the models and consultants available �nd it convenient to do

so. Then estimates made using the average, other things being equal, will tend

to overestimate the revenue. In this case, the �nancial agency has the choice

to go along with the standard procedure, or to �rock the boat� by suggesting

using a distribution. The e�ect of doing so many well put the whole project at

risk. So the perceived best interests of the agency are served by accepting the

standard procedure, which strengthens the case for the project, but suspecting

that it overestimates the revenue, �nding a risk-sharing agreement, explicit or

implicit, which cushions them against the likely result.

Conversely, the public agency's perceived best interests are served by using

the standard practice, since this will increase the probability of raising the

funding, anticipating that the public bene�ts in terms (for example) of con-

gestion and pollution relief will be higher than calculated, and seek to ensure

that the risk will be wholly born by the funders.

The paradoxical case is that each will be better served by using the distri-

butions themselves, for internal, con�dential reasons, but using the average (or

preferably the median) value for public discussion, and hoping that the other

party believes. But it is not a long-term solution, since it is almost bound

to lead to later disputes, attempts to renegotiate, or collapse of con�dence in

such deals. There are signs that this can happen. The dilemma is obvious �

will the �nancial advisers prefer to go with an overestimate to secure patron-

age and the contract (in a bid setting) knowing the likelihood (from previous

contractual arrangements) that the risk can be transferred to government, or

act as good corporate citizens and promote the more appropriate VTTS across

the distribution.

In practice, this question is either ignored, or not expressed in this language
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(though accepting the underlying signi�cance). The great majority of patron-

age studies around the world use simple averages for VTTS, so this provides

an almost unquestioned benchmark as an always available fallback position,

and a handy defensive (but not necessary defensible) instrument.

In this sense, distribution of the value of time in the population represents

a number of issues including the choice of behavioural models and estimation

procedures as well as the interpretation results will be subject to.

5.2.1 VTTS in Freight Transport

While for passengers transport there is a large literature and an important

scienti�c activity on this topic, for freight transport both scienti�c and profes-

sional studies are very scarce. This little attention given to freight transport is

mainly due to the information scarcity in the sector, where the competitiveness

is very strong and information on costs play a strategic role. Furthermore, the

logistic chain is very complex and has multiple decision takers. In passenger

transport the decision maker is the passenger himself; but goods cannot decide,

as notes DeJong (1996).

Ortuzar and Willumsen (2001) point out four reasons for the little research

in freight transport modelling compared to passenger modelling:

� There are many aspects of freight demand that are more di�cult to

model than passenger movements.

� For some time urban congestion has been highest in the political agenda

of most industrialised countries and in this �eld passenger play a more

important role than freight.

� The movement of freight involves more actors than the movement of

passengers; we have the industrial �rm or �rms sending and receiving

the goods, the shippers organising the consignment and modes, the car-

rier(s) undertaking the movement and several others running tranship-

ment, storage and custom facilities. In some cases two or more of these

may coincide, for example in own-account operators, bur there is always

scope for con�icting objectives which are di�cult to model in detail in

practice.
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� Recent trends in freight research have emphasised the role it plays in the

overall production process, inventory control and management of stocks.

These trends are a departure from more traditional passenger modelling

techniques and share little in common (Regan and Garrido, 2002).

The value of time of transport is de�ned as the marginal rate of substitution

between travel time and travel cost. While in passenger's transport it comes

from the Lagrange multiplier associated to the time constraint in the individ-

ual utility maximization, in freight transport time savings enter the �nancial

optimization as they allow to reduce other costs like labour and capital costs

and improve productivity.

In France, few studies were devoted to the empirical estimation of the

value of time in freight transport; the main studies were realized by Fei Jiang

(Jiang, 1998) who utilises revealed preference and Laura Wynter (Wynter,

1994), applying revealed and stated preference of shippers, by phone surveys,

both studies in the context of their respective doctoral thesis. Their results

range from 27 to 74 e/hour. Massiani (2005, pp.151-155) presents a review

of the estimations of the value of time for freight transport in Europe found

in literature. Governmental recommendation for the value of time for freight

transport in France is 30 e(2000)/hour (Commissariat Général du Plan, 2001).

5.3 Discrete Choice Models

5.3.1 The Multinomial Logit

The most common theoretical base for generating discrete choice models is the

random utility theory (Domencich and McFadden, 1975; Williams, 1977)2. In

random utility models (RUM) the utility that the decision maker n obtains

from alternative j is de�ned by

Unj = Vnj + εnj (5.1)

2For the hypothesis underlying the model see also Ortuzar and Willumsen (2001) and
Ben-Akiva and Lerman (1994)
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where Unj is a non-stochastic utility function (called systematic or repre-

sentative component of the utility) and εnj is a random component (or distur-

bance) which captures the factors that a�ect utility but the researcher does

not or can not observe. The deterministic part is usually assumed to be linear,

so that

Vnj = β′xnj

.

The individual selects the maximum-utility alternative so that user n chooses

alternative i if and only if

Uni ≥ Unj ∀j 6= i

From this perspective, the choice probability of alternative i is equal to

the probability that the utility of alternative i is greater than or equal to the

utilities of all other alternatives in the choice set. This can be written as

Pni = Prob(Uni ≥ Unj ∀j 6= i)

Using the random utility model in expression (5.1), this can be rewritten

as

Pni = Prob(Vni + εni ≥ Vnj + εnj ∀j 6= i)

To derive a speci�c random utility model, we require an assumption about

the joint probability distribution of the full set of disturbances εnj,∀j. The

issues therefore are what distribution is assumed for each model, and what is

the motivation for these di�erent assumptions.

The logit model is derived under the assumptions of independent and identi-

cally distributed Gumbel (IID) disturbances, which means that the unobserved

factors are uncorrelated over alternatives and have the same variance for all

alternatives. The density for each unobserved component of utility is

f(εnj) = e−εnje−e
−εnj

(5.2)



5.3. Discrete Choice Models 157

and the cumulative distribution is

F (εnj) = e−e
−εnj

(5.3)

The variance of this distribution is π2/6. By assuming the variance is

π2/6 we are implicitly normalizing the scale of the utility. If εni and εnj are

independent and identically Gumbel (or type I extreme value) distributed, then

εn = εnj − εni is logistically distributed

F (εn) =
eεn

1 + eεn

If εni is considered given, the choice probability is the cumulative distri-

bution for each εnj evaluated at εni + Vni − Vnj, which, according to (5.3) is

exp(−exp(−(εni + Vni − Vnj))). Since the ε's are independent, this cumula-

tive distribution over all j 6= i is the product of the individual cumulative

distributions:

Pni|εni =
∏
j 6=i

e−e
−(εni+Vni−Vnj)

Of course, εni is not given, and so the choice probability is the integral of

Pni|εni over all values of εni weighted by its density (5.2):

Pni =

∫
(
∏
j 6=i

e−e
−(εni+Vni−Vnj)

)e−εnie−e
−εnj

(5.4)

Some algebraic manipulation of this integral (Domencich and McFadden,

1975) results in a succinct, closed-form expression:

Pni =
eVni∑
j e

Vnj
(5.5)

which is the logit choice probability.
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Limitations of Logit

In addition to the well know property of independence of irrelevant alterna-

tives (IIA) and it's inability to deal with correlated choices over time (panel

data), the constant parameters represents a restrictive assumption. If one or

more characteristics (parameters) vary randomly across the population, the

assumptions of the standard logit calibration are not satis�ed, and the error

term is no longer distributed independently of the explanatory variables. Thus

the coe�cients estimates from the calibration will be biased.

Another problem due to heterogeneity arises because the estimation pro-

duces estimates of time and cost parameters that are averages over the sample,

and they are then used in ratio form to give the value of time (Fowkes and

Wardman, 1988). The true value of time would be the average over the sample

of individuals' value of time, these values being the ratio of their individual

time and cost coe�cients. It is easy to demonstrate that the ratio of the means

and the means of the ratio are not necessary equal (unless the denominator is

constant or the ratios are constants).

Moreover, as the parameters for time and cost are estimates from the model,

they are not really constants but random variables with a certain probability

density function (PDF). For this reason the value of time (calculated as the

ratio between the time and cost parameters in a linear in parameters model) is

also a random variable with an unknown PDF. We know the maximum likeli-

hood parameters are asymptotically distributed multivariate Normal. Conse-

quently the VTTS point estimate is a random variable governed by an unknown

PDF, the probability function for the ratio between two Normally distributed

variables is unknown a priori); only some things are known is special cases.

For example, the ratio between two independently distributed standard Nor-

mal variables follows a Cauchy PDF (Arnold and Brockett, 1992), but this

is unstable since it has an in�nite variance and its mean does not have an

analytical expression.

However, some econometric methods were developed in order to estimate

con�dential intervals for the value of time calculated as the ratio between the

time and cost parameters, say βt and βc. The most applied is the asymptotic

t-test.
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The asymptotic t-test is generally used to prove if a normally distributed

parameter is signi�cant di�erent from zero. Ben-Akiva and Lerman (1994)

present an extension of this test for a linear combination of the parameters. As

βt and βc are asymptotically distributed normal, the following null hypothesis

can be postulated:

H0 : βt − V Tβc = 0,

where VT represents the value of time point estimate. The con�dence interval

is given by the set of VT values for which it is not possible to reject H0 at

a given level of signi�cance. The corresponding test statistic is (Armstrong

et al., 2001):

t =
βt − V Tβc√

V ar(βt − V Tβc)

This expression distributes normal for linear models and asymptotically

normal for non-linear models like the MNL (see Ben-Akiva and Lerman (1994)).

Armstrong et al. (2001) also derive the upper and lower bounds for the interval

as follows:

VS,I = (
βt
βc

tc
tt

)
(tttc − ρt2)

(t2c − t2)
± (

βt
βc

tc
tt

)

√
(ρt2 − tttc)2 − (t2t − t2)(t2c − t2)

(t2c − t2)
(5.6)

where tt and tc correspond to the t-statistic for βt and βc, respectively; t

is the critical value of t given the degree of con�dence required and sample

size and ρ is the coe�cient of correlation between both parameter estimates.

Expression (5.6) is a real number only if the radical argument is non-negative;

it can be shown that this condition is met when the parameters βt and βc are

statistically signi�cant (so that tt and tc are greater than t). This condition

assures positive upper and lower bounds.

It can be observed that the con�dence interval derived from this formulation

is not symmetrical with respect to the VT point estimate (βt/βc), and that the

interval's mid-point is greater than βt/βc as well. Another feature is that the

value of ρ has a strong in�uence on the size of the interval. In fact, the bigger
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the value of ρ the narrower the interval and vice versa, all other things being

equal. In addition, the more signi�cant the t-statistics are, the narrower the

intervals (for details, Armstrong et al. (2001)).

5.3.2 The Mixed Logit Model

The speci�cation of the random coe�cients logit model (or mixed logit)3 is the

same as for the standard logit except that varies over decision makers rather

than being �xed. As in the MNL the utility of person n from alternative j is

speci�ed as

Unj = β′nxnj + εnj (5.7)

where xnj are observed variables that relate to the alternative and decision

maker, βn is a vector of coe�cients of these variables for person n representing

that person's tastes, and εnj is a random term that is iid extreme value. The

coe�cients may vary over decision makers in the population with density f(β).

This density is a function of parameters θ that represent, for example, the mean

and variance of the β's in the population.

The decision maker knows the value of his own βn and εnj's for all j and

chooses the alternative i if and only if Uni ≥ Unj∀j 6= i. The researcher

observes the x's but not βn or the εnj's. If the researcher observed βn, then

the choice probability would be standard logit, since the εnj's are iid extreme

value. That is, the probability conditional on βn is

Lni(βn) =
eβ
′
nxni∑

j e
β′nxni

However, the researcher does not know βn and therefore can not condition

on β. The unconditional choice probability is therefore the integral of Lni(βn)

over all possible variables of βn.

Pni =

∫
eβ
′
nxni∑

j e
β′nxni

f(β)dβ

3Random coe�cients is the most widely used derivation of mixed logit models, but not
the only one; each derivation provides a particular interpretation (Train, 2003).
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which is the random coe�cients probability.

The researcher speci�es a distribution for the coe�cients and estimates the

parameters of that distribution.

McFadden (2000) show that any random utility model can be approximated

to any degree of accuracy by a mixed logit with appropriated choice of variables

and mixing distribution.

The researcher speci�es the functional form f(·) and wants to estimate the

parameters θ. The choice probabilities are

Pni =

∫
Lni(β)f(β|θ)dβf(β)dβ.

where

Lni(β) =
eβ
′
nxni∑

j e
β′nxni

The probabilities are approximated through simulation for any given value

of θ:

(1) Draw a value of β from (β|θ), and label it β1 with the superscript

r=1 referring to the �rst draw.

(2) Calculate the logit formula Lni(βr) with this draw.

(3) Repeat steps 1 and 2 many times, and average the results.

This average is the simulated probability:

P̌ni =
1

R

R∑
r=1

Lni(β
r),

where R is the number of draws. P̌ni is an unbiased estimator of Pni by con-

struction. Its variance decreases as R increases. It is strictly positive, so that

lnP̌ni is de�ned, which is useful for approximating the log-likelihood function

below. P̌ni is smooth (twice di�erentiable) in the parameters θ and variables x,

which facilitates the numerical search for the maximum likelihood function and

the calculation of elasticities. And P̌ni sums to one over alternatives, which is

useful in forecasting.
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The simulated probabilities are inserted into the log-likelihood function to

give a simulated log-likelihood:

SLL =
N∑
n=1

J∑
j=1

ynjlnP̌nj,

where ynj = 1 if n chose j and zero otherwise. The maximum simulated

likelihood estimator is the value of θ that maximizes SLL. Usually, di�erent

draws are taken for each observation. This procedure maintains independence

over decision makers of the simulated probabilities that enter SLL.

5.4 Bayesian Procedures

This section aims at introducing the bayesian procedures used to estimate

mixed logit models. As they represent relatively new procedures they are

described in more details than the precedent procedures, drawn on material in

Train (2003).

A powerful set of procedures for estimating discrete choice models has been

developed within the Bayesian tradition. The breakthrough concepts were in-

troduced by Albert and Chib (1993) and McCulloch and Rossi (1994) in the

context of probit, and by Allenby and Lenk (1994) for mixed logits with nor-

mally distributed coe�cients. These authors showed how the parameters of the

model can be estimated without needing to calculate the choice probabilities.

Their procedures provide an alternative to the classical estimation methods.

Rossi et al. (1996) and Allenby and Rossi (1999) showed how the procedures

can also be used to obtain information on individual-level parameters within

a model with random taste variation. Train (2001) extended the Bayesian

procedure for mixed logit to nonnormal distributions of coe�cients, including

lognormal, uniform, and triangular distributions.

Two important notes are required regarding the Bayesian perspective. First,

the Bayesian procedures, and the term �Hierarchical Bayes� that is often used

in the context of discrete choice models, refer to an estimation method, not a

behavioural model. Probit, mixed logit, or any other model that the researcher

speci�es can, in principle, be estimated by either classical or Bayesian proce-
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dures. Second, the Bayesian perspective from which these procedures arise

provides a rich and intellectually satisfying paradigm for inference and deci-

sion making. Nevertheless, a researcher who is uninterested in the Bayesian

perspective can still bene�t from Bayesian procedures: the use of Bayesian pro-

cedures does not necessitate that the researcher adopt a Bayesian perspective

on statistics. The Von-Misses theorem shows that the Bayesian procedures

provide an estimator whose properties can be examined and interpreted in

purely classical ways.

5.4.1 Overview of Bayesian Concepts

Consider a model with parameters θ. The researcher has some initial ideas

about the value of these parameters and collects data to improve this under-

standing. Under Bayesian analysis, the researcher's ideas about the parameters

are represented by a probability distribution over all possible values that the

parameters can take, where the probability represents how likely the researcher

thinks it is for the parameters to take a particular value.

Prior to collecting data, the researcher's ideas are based on logic, intuition,

or past analyses. These ideas are represented by a density on θ, called the

prior distribution and denoted K(θ) 4.

The researcher collects data in order to improve her ideas about the value

of θ. Suppose the researcher observes a sample of N independent decision

makers. Let yn denote the observed choice (or choices) of decision maker n,

and let the set of observed choices for the entire sample be labeled collectively

as Y = y1, . . . , yN . Based on this sample information, the researcher changes,

or updates, her ideas about θ. The updated ideas are represented by a new

density on θ, labeled K(θ|Y ) and called the posterior distribution. This pos-

terior distribution depends on Y , since it incorporates the information that is

4In the traditional literature we often �nd phrases such as �x is random� or �we shall treat
w as random� or even �we shall treat x as �xed, i.e. as not random� where "random" means
that the object in question will be assigned a probability distribution. In the Bayesian
approach all objects appearing in a model are assigned probability distributions and are
random in this sense. The only distinction between objects is whether they will become
known for sure when the data are in, in which case they are data (!); or whether they
will not become known for sure, in which case they are parameters. Generally, the words
�random� and ��xed� do not �gure in a Bayesian analysis and should be avoided (Lancaster,
2006).



164 Chapter 5. Estimating the Value of Travel Time Savings

contained in the observed sample.

There is a precise relationship between the prior and posterior distribution,

established by Bayes' rule. Let P (yn|θ) be the probability of outcome yn for

decision maker n. This probability is the behavioural model that relates the

explanatory variables and parameters to the outcome, though the notation for

the explanatory variables is omitted for simplicity. The probability of observing

the sample outcomes Y is

L(Y |θ) =
N∏
n=1

P (yn|θ)

This is the likelihood function (not logged) of the observed choices. Note that

it is a function of the parameters θ.

Bayes' rule provides the mechanism by which the researcher improves her

ideas about θ. By the rules of conditioning,

K(θ|Y )L(Y ) = L(Y |θ)k(θ) (5.8)

where L(Y ) is the marginal probability of Y , marginal over θ:

L(Y ) =

∫
L(Y |θ)k(θ)dθ.

Both sides of equation (5.8) represent the joint probability of Y and θ, with

the conditioning in opposite directions. The left-hand side is the probability of

Y times the probability of θ given Y , while the right-hand side is the probability

of θ times the probability of Y given θ. Rearranging, we have

K(θ|Y ) =
L(Y |θ)k(θ)

L(Y )
(5.9)

This equation is Bayes' rule applied to prior and posterior distributions. In

general, Bayes rule links conditional and unconditional probabilities in any set-

ting and does not imply a Bayesian perspective on statistics. Bayesian statis-

tics arises when the unconditional probability is the prior distribution (which

re�ects the researcher's ideas about θ not conditioned on the sample informa-

tion) and the conditional probability is the posterior distribution (which gives
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the researcher's ideas about θ conditioned on the sample information).

We can express equation (5.9) in a more compact and convenient form.

The marginal probability of Y , L(Y ), is constant with respect to θ and, more

speci�cally, is the integral of the numerator of (5.9). As such, L(Y ) is simply

the normalizing constant that assures that the posterior distribution integrates

to 1, as required for any proper density. Using this fact, equation (5.9) can

be stated more succinctly by saying simply that the posterior distribution is

proportional to the prior distribution times the likelihood function:

K(θ|Y )αL(Y |θ)k(θ).

Intuitively, the probability that the researcher ascribes to a given value

for the parameters after seeing the sample is the probability that she ascribes

before seeing the sample times the probability (i.e., likelihood) that those pa-

rameter values would result in the observed choices. The mean of the posterior

distribution is

θ =

∫
θK(θ|Y )dθ (5.10)

This mean has importance from both a Bayesian and a classical perspective.

From a Bayesian perspective, θ is the value of θ that minimizes the expected

cost of the researcher being wrong about θ, if the cost of error is quadratic in the

size of the error (Lancaster, 2006; Train, 2003). From a classical perspective,

θ is an estimator that has the same asymptotic sampling distribution as the

maximum likelihood estimator.

5.4.2 Drawing from the Posterior

Usually, the posterior distribution does not have a convenient form from which

to take draws. For example, we know how to take draws easily from a joint

untruncated normal distribution; however, it is rare that the posterior takes

this form for the entire parameter vector. Importance sampling can be useful

for simulating statistics over the posterior. Geweke (1992, 1997) describes the

approach with respect to posteriors and provides practical guidance on ap-
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propriate selection of a proposal density. Two other methods are particularly

useful for taking draws from a posterior distribution: Gibbs sampling and the

Metropolis-Hasting algorithm. These methods are often called Monte Carlo

Markov chain, or MCMC, methods. Formally, Gibbs sampling is a special

type of Metropolis-Hasting algorithm (Gelman, 1992).However, the case is so

special, and so conceptually straightforward, that the term Metropolis-Hasting

(MH) is usually reserved for versions that are more complex than Gibbs sam-

pling. That is, when the MH algorithm is Gibbs sampling, it is referred to

as Gibbs sampling, and when it is more complex than Gibbs sampling, it is

referred to as the MH algorithm.

As stated, the mean of the posterior is simulated by taking draws from

the posterior and averaging the draws. Instead of taking draws from the mul-

tidimensional posterior for all the parameters, Gibbs sampling allows the re-

searcher to take draws of one parameter at a time (or a subset of parameters),

conditional on values of the other parameters (Casella and George, 1992).

Drawing from the posterior for one parameter conditional on the others is usu-

ally much easier than drawing from the posterior for all parameters simultane-

ously. In some cases, the MH algorithm is needed in conjunction with Gibbs

sampling. The MH algorithm is particularly useful in the context of posterior

distributions because the normalizing constant for the posterior need not be

calculated. Recall that the posterior is the prior times the likelihood function,

divided by a normalizing constant that assures that the posterior integrates

to one. The MH algorithm can be applied without knowing or calculating

the normalizing constant of the posterior. In summary, Gibbs sampling, com-

bined if necessary with the MH algorithm, allows draws to be taken from the

posterior of a parameter vector for essentially any model.

Gibbs Sampling

For multinomial distributions, it is sometimes di�cult to draw directly from

the joint density and yet easy to draw from the conditional density of each

element given the values of the other elements. Gibbs sampling can be used

in these situations. A general explanation is provided by Casella and George

(1992).
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Consider two random variables ε1 and ε2. Generalization to higher dimen-

sion is obvious. The joint density is f(ε1, ε2), and the conditional densities are

f(ε1|ε2) and f(ε2|ε1). Gibbs sampling proceeds by drawing iteratively from

the conditional densities: drawing ε1 conditional on a value of ε2, drawing ε2

conditional on this draw of ε1, drawing a new ε1 conditional on the new value

of ε2, and so on. This process converges to draws from the joint density. To

be more precise:

1. Choose an initial value for ε1, called ε0
1 Any value with nonzero density

can be chosen.

2. Draw a value of ε2 called ε0
2, from f(ε2|ε0

1).

3. Draw a value of ε1, called ε1
1 from f(ε1|ε0

2)

4. Draw ε1
2 from f(ε2|ε1

1), and so on.

The Metropolis-Hastings Algorithm

If all else fails, the Metropolis-Hastings (MH) algorithm can be used to obtain

draws from a density. Initially developed by Metropolis et al. (1953) and

generalized by Hastings (1970), the MH algorithm operates as follows. The

goal is to obtain draws from f(ε).

1. Start with a value of the vector ε, labeled ε0.

2. Choose a trial value of ε1 as ε̃1 = ε0 + η, where η is drawn from a

distribution g(η) that has zero mean. Usually a normal distribution is

speci�ed for g(η).

3. Calculate the density at the trial value ε̃1, and compare it with the

density at the original value ε0. That is, compare f(ε̃1) with f(ε0).

If f(ε̃1) ≥ f(ε0), then accept ε̃1, label it ε1, and move to step 4. If

f(ε̃1) = f(ε0), then accept ε̃1 with probability f(ε̃1)/f(ε0), and reject

it with probability 1 − f(ε̃1)/f(ε0). To determine whether to accept or

reject ε̃1 in this case, draw a standard uniform µ. If µ ≤ f(ε̃1)/f(ε0),

then keep ε̃1. Otherwise, reject ε̃1. If ε̃1 is accepted, then label it ε1. If

ε̃1 is rejected, then use ε0 as ε1.
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4. Choose a trial value of ε2 as ε̃2 = ε1 + η, where η is a new draw from

g(η).

5. Apply the rule in step 3 to either accept ε̃2 as ε2 or reject ε̃2 and use ε1

as ε2.

6. Continue this process for many iterations. The sequence et becomes

equivalent to draws from f(ε) for su�ciently large t.

The draws are serially correlated, since each draw depends on the previous

draw. In fact, when a trial value is rejected, the current draw is the same as

the previous draw. This serial correlation needs to be considered when using

these draws. The MH algorithm can be applied with any density that can be

calculated. The algorithm is particularly useful when the normalizing constant

for a density is not known or cannot be easily calculated. Suppose that we

know that ε is distributed proportional to f ∗(ε). This means that the density

of ε is f(ε) = 1
k
f ∗(ε), where the normalizing constant k =

∫
f ∗(ε)dε assures

that f integrates to 1. Usually k cannot be calculated analytically, for the same

reason that we need to simulate integrals in other settings. Luckily, the MH

algorithm does not utilize k. A trial value of et is tested by �rst determining

whether f(ε̃t) > f(ε̃t−1). This comparison is una�ected by the normalizing

constant, since the constant enters the denominator on both sides. Then, if

f(ε̃t) ≤ f(ε̃t−1), we accept the trial value with probability f(ε̃t)/f(ε̃t−1). The

normalizing constant drops out of this ratio. The MH algorithm is actually

more general than described here, though in practice it is usually applied as

described. Chib and Greenberg (1995) provide an excellent description of the

more general algorithm as well as an explanation of why it works. Under the

more general de�nition, Gibbs sampling is a special case of the MH algorithm,

as Gelman (1992) pointed out. The MH algorithm and Gibbs sampling are

often called Markov chain Monte Carlo (MCMC, or MC-squared) methods; a

description of their use in econometrics is provided by Chib and Greenberg

(1996). The draws are Markov chains because each value depends only on the

immediately preceding one, and the methods are Monte Carlo because random

draws are taken.
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5.4.3 Posterior Mean as a Classical Estimator

The Bayesian procedure provides draws from the joint posterior of the pa-

rameters. In a Bayesian analysis, these draws are used in a variety of ways

depending on the purpose of the analysis. The mean and standard deviation of

the draws are simulated approximations to the mean and standard deviation

of the posterior. These statistics have particular importance from a classical

perspective, due to the Bernstein-von Mises theorem. Consider a model with

parameters θ whose true value is θ∗. The maximum of the likelihood function

is θ̂, and the mean of the posterior is θ for a prior that is proper and strictly

positive in a neighbourhood of θ∗. Three interrelated statements are estab-

lished in di�erent versions of the theorem (e.g., Rao (1987); Cam and Yang

(1990); Lehmann and Casella (1998); Bickel and Doksum (2000)

1. The posterior distribution of θ converges to a normal distribution with

covariance B−1/N around its mean, where B is the information matrix.

Stated more precisely:
√
N(θ − θ) d→ N(0, B−1), where the distribution

that is converging is the posterior rather than the sampling distribution.

2. The posterior mean converges to the maximum of the likelihood function:√
N(θ) − θ̂ p→ 0. This result is a natural implication of statement (1).

Asymptotically, the shape of the posterior becomes arbitrarily close to

the shape of the likelihood function, since the posterior is proportional to

the likelihood function times the prior and the prior becomes irrelevant

for large enough N . The mean and mode of a normal distribution are

the same.

3. The asymptotic sampling distribution of the posterior mean is the same

as for the maximum of the likelihood function:
√
N(θ)−θ∗ d→ N(0, B−1).

This result is obvious from statement (2).

The third statement says that the mean of the posterior is an estimator

that, in classical terms, is equivalent to MLE. The �rst statement establishes

that the standard deviations of the posterior provide classical standard errors

for the estimator. The true mean and standard deviation of the posterior

cannot be calculated exactly except in very simple cases. These moments are
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approximated through simulation, by taking draws from the posterior and cal-

culating the mean and standard deviation of the draws. For �xed number of

draws, the simulated mean, denoted θ̆, is consistent and asymptotically nor-

mal, with variance equal to 1 + (1/R) times the variance of the non-simulated

mean, where R is the number of (independent) draws. If the number of draws

(whether independent or not) is considered to rise with N at any rate, the

simulation noise disappears asymptotically such that θ̆ is e�cient and asymp-

totically equivalent to MLE. In contrast, MSLE is inconsistent for a �xed

number of draws. For consistency, the number of draws must be considered to

rise with N , but even this condition is not su�cient for asymptotic normality.

The number of draws must be considered to rise faster than
√
N for MSLE to

be asymptotically normal, in which case it is also equivalent to MLE. Since it

is di�cult to know in practice how to satisfy the condition that the number

of draws rises faster than
√
N , θ̆ is attractive relative to MSLE, even though

their non-simulated counterparts are equivalent.

The researcher can therefore use Bayesian procedures to obtain parameter

estimates and then interpret them the same as if they were maximum likeli-

hood estimates. A highlight of the Bayesian procedures is that the results can

be interpreted from both perspectives simultaneously, drawing on the insights

a�orded by each tradition. This dual interpretation parallels that of the classi-

cal procedures, whose results can be transformed for Bayesian interpretation as

described by Geweke (1989). In short, the researcher's statistical perspective

need not dictate her choice of procedure.

5.4.4 Posteriors for the Mean and Variance

The posterior distribution takes a very convenient form for some simple infer-

ence processes. We describe two of these situations, which, as we will see, often

arise within more complex models for a subset of the parameters. Both results

relate to the normal distribution. We �rst consider the situation where the

variance of a normal distribution is known, but the mean is not. We then turn

the tables and consider the mean to be known but not the variance. Finally,

combining these two situations with Gibbs sampling, we consider the situation

where both the mean and variance are unknown.
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Result A: Unknown Mean, Known Variance

We discuss the one-dimensional case �rst, and then generalize to multiple di-

mensions. Consider a random variable β that is distributed normal with un-

known mean b and known variance σ. The researcher observes a sample of

N realizations of the random variable, labeled βn, n = 1, . . . , N . The sample

mean is β = (1/N)
∑

n βn. Suppose the researcher's prior on b is N(b0, s0); that

is, the researcher's prior beliefs are represented by a normal distribution with

mean b0 and variance s0. Note that we now have two normal distributions:

the distribution of β, which has mean b, and the prior distribution on this

unknown mean, which has mean b0. The prior indicates that the researcher

thinks it is most likely that b = b0 and also thinks there is a 95 percent chance

that b is somewhere between b0− 1.96
√
s0 and b0 + 1.96

√
s0. Under this prior,

the posterior on b is N(b1, s1) where

b1 =
1
s0
b0 + N

σ
β

1
s0

+ N
σ

and

s1 =
1

1
s0

+ N
σ

The posterior mean b1 is the weighted average of the sample mean and the

prior mean5.The weight on the sample mean rises as sample size rises, so that

for large enough N, the prior mean becomes irrelevant. Often a researcher

will want to specify a prior that represents very little knowledge about the

parameters before taking the sample. In general, the researcher's uncertainty is

re�ected in the variance of the prior. A large variance means that the researcher

has little idea about the value of the parameter. Stated equivalently, a prior

that is nearly �at means that the researcher considers all possible values of the

parameters to be equally likely. A prior that represents little information is

called di�use.

The multivariate versions of this result are similar. Consider a K-dimensional

random vector βÑ(b,W ) with known W and unknown b. The researcher ob-

serves a sample βn, n = 1, . . . , N , whose sample mean is β. If the researcher's

5For the proof, see Train (2003)
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prior on b is di�use (normal with an unboundedly large variance), then the pos-

terior is N(β,W/N). To take draws from this posterior let L be the Choleski

factor of W/N . Draw K iid standard normal deviates, ηi, i = 1, . . . , K, and

stack them into a vector η = 〈η1, . . . , ηK〉′. Calculate b̃ = β+Lη. The resulting

vector b̃ is a draw from N(β,W/N).

Result B: Unknown Variance, Known Mean

Consider a (one-dimensional) random variable that is distributed normal with

known mean b and unknown variance s. The researcher observes a sample of

N realizations, labeled βn, n = 1, . . . , N . The sample variance around the

known mean is s = (1/N)
∑

n(βn − b)2. Suppose the researcher's prior on s is

inverted gamma with degrees of freedom v0 and scale s0. This prior is denoted

IG(v0, s0). The density is zero for any negative value for s, re�ecting the fact

that a variance must be positive. The mode of the inverted gamma prior is

s0v0/(1 + v0). Under the inverted gamma prior, the posterior on σ is also

inverted gamma IG(v1, s1), where

v1 = v0 +N,

s1 =
s0v0 +Ns

v0 +N
.

The inverted gamma prior becomes more di�use with lower v0. For the

density to integrate to one and have a mean, v0 must exceed 1. It is customary

to set s0 = 1 when specifying v0 → 1. Under this di�use prior, the posterior

becomes IG(1 + N, (1 + Ns)/(1 + N)). The mode of this posterior is (1 +

Ns)/(2 +N), which is approximately the sample variance s for large N . The

multivariate case is similar. The multivariate generalization of an inverted

gamma distribution is the inverted Wishart distribution. The result in the

multivariate case is the same as with one random variable except that the

inverted gamma is replaced by the inverted Wishart. AK-dimensional random

vector βÑ(b,W ) has known b but unknown W . A sample of size N from this

distribution has variance around the known mean of S = (1/N)
∑

n(βn −
b)(βn− b)′ . If the researcher's prior on W is inverted Wishart with v0 degrees
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of freedom and scale matrix S0, labeled IW (v0, S0), then the posterior on W

is IW (v1, S1) where

v1 = v0 +N,

S1 =
S0v0 +NS

v0 +N
.

The prior becomes more di�use with lower v0, though v0 must exceed K in

order for the prior to integrate to one and have means. With S0 = I , where I is

the K-dimensional identity matrix, the posterior under a di�use prior becomes

IW (K+N, (KI+NS)/(K+N)). Conceptually, the prior is equivalent to the

researcher having a previous sample of K observations whose sample variance

was I. As N rises without bound, the in�uence of the prior on the posterior

eventually disappears. Consider �rst an inverted gamma IG(v1, s1). Draws

are taken as follows:

1. Take v1 draws from a standard normal, and label the draws ηi, i =

1, . . . , v1.

2. Divide each draw by
√
s1, square the result, and take the average. That

is, calculate r = (1/v1)
∑

i(
√

1/s1ηi)
2, which is the sample variance of v1

draws from a normal distribution whose variance is 1/s1.

3. Take the inverse of r : s̃ = 1/r is a draw from the inverted gamma.

Draws from a K-dimensional inverted Wishart IW (v1, S1) are obtained as

follows:

1. Take v1 draws of K-dimensional vectors whose elements are independent

standard normal deviates. Label these draws ηi, i = 1, . . . , v1.

2. Calculate the Choleski factor of the inverse of S1, labeled L, where LL′ =

S−1
1 .

3. Create R = (1/v1)
∑

i(Lηi)(Lηi)
′. Note that R is the variance of draws

from a distribution with variance S−1
1 .

4. Take the inverse of R. The matrix S̃ = R−1 is a draw from IW (v1, S1).
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Unknown Mean and Variance

Suppose that both the mean b and variance W are unknown. For neither of

these parameters does the posterior take a convenient form. However, draws

can easily be obtained using Gibbs sampling and results A and B. A draw of

b is taken conditional on W , and then a draw of W is taken conditional on b.

Result A says that the posterior for b conditional on W is normal, which is

easy to draw from. Result B says that the posterior for W conditional on b is

inverted Wishart, which is also easy to draw from. Iterating through numerous

cycles of draws from the conditional posteriors provides, eventually, draws from

the joint posterior.

5.4.5 Hierarchical Bayes for Mixed Logit

In this section we show how the Bayesian procedures can be used to estimate

the parameters of a mixed logit model. We utilize the approach developed

by Allenby (1997), implemented by Software (2000), and generalized by Train

(2001). Let the utility that person n obtains from alternative j in time period

t be

Unjt = β′nxnjt + εnjt,

where εnjt is iid extreme value and βnÑ(b,W ).

Giving β′n a normal distribution allows us to use results A and B, which

speeds estimation considerably. The researcher has priors on b andW . Suppose

the prior on b is normal with an unboundedly large variance. Suppose that the

prior on W is inverted Wishart with K degrees of freedom and scale matrix I,

the K-dimensional identity matrix.

Note that these are the priors used for results A and B. More �exible priors

can be speci�ed for W , using the procedures of, for example, McCulloch and

Rossi (2000), though doing so makes the Gibbs sampling more complex.

A sample of N people is observed. The chosen alternatives in all time

periods for person n are denoted y′n = 〈yn1, . . . , ynT 〉, and the choices of the

entire sample are labelled Y = 〈y1, . . . , yT 〉. The probability of person n's
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observed choices, conditional on β, is

L(yn|β) =
∏
t

eβ
′xnyntt∑
j e

β′xnjt
.

The probability not conditional on β is the integral of L(yn|β) over all β:

L(yn|b,W ) =

∫
L(yn|β)f(β|b,W )dβ,

where f(β|b,W ) is the normal density with mean b and variance W . This

L(yn|b,W ) is the mixed logit probability. The posterior distribution of b and

W is, by de�nition,

K(b,W |Y )α
∏
n

L(yn|b,W )k(b,W ), (5.11)

where k(b,W ) is the prior on b andW described earlier (i.e., normal for b times

inverted Wishart for W ).

It would be possible to draw directly from K(b,W |Y ) with the MH al-

gorithm. However, doing so would be computationally very slow. For each

iteration of the MH algorithm, it would be necessary to calculate the right-

hand side of (5.11). However, the choice probability L(yn|b,W ) is an integral

without a closed form and must be approximated through simulation. Each it-

eration of the MH algorithm would therefore require simulation of L(yn|b,W )

for each n. That would be very time-consuming, and the properties of the

resulting estimator would be a�ected by it. Recall that the properties of the

simulated mean of the posterior were derived under the assumption that draws

can be taken from the posterior without needing to simulate the choice prob-

abilities. MH applied to (5.10) violates this assumption.

Drawing from K(b,W |Y ) becomes fast and simple if each βn is considered

to be a parameter along with b and W , and Gibbs sampling is used for the

three sets of parameters b, W , and βn∀n. The posterior for b,W , and βn∀n is

K(b,W, βn∀n|Y )α
∏
n

L(yn|βn)f(βn|b,W )k(b,W ).

Draws from this posterior are obtained through Gibbs sampling. A draw
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of each parameter is taken, conditional on the other parameters:

1. Take a draw of b conditional on values of W and βn∀n.

2. Take a draw of W conditional on values of b and βn∀n.

3. Take a draw of βn∀n conditional on values of b and W .

Each of these steps is easy, as we will see. Step 1 uses result A, which gives

the posterior of the mean given the variance. Step 2 uses result B, which gives

the posterior of the variance given the mean. Step 3 uses an MH algorithm,

but in a way that does not involve simulation within the algorithm. Each step

is described in the following.

1. b|W,βn∀n. We condition on W and each person's βn in this step, which

means that we treat these parameters as if they were known. Result A

gives us the posterior distribution of b under these conditions. The βn's

constitute a sample of N realizations from a normal distribution with

unknown mean b and known variance W . Given our di�use prior on b,

the posterior on b is N(β,W/N), where β is the sample mean of the

βn's. To take draws from this posterior proceed as Result A described in

section 5.4.4.

2. W |b, βn∀n. Result B gives us the posterior for W conditional on b and

the βn's. The βn's constitute a sample from a normal distribution with

known mean b and unknown variance W . Under our prior on W , the

posterior on W is inverted Wishart with K +N degrees of freedom and

scale matrix (KI+NS1)/(K+N), where S1 = (1/N)
∑

n(βn−b)(βn−b)′is
the sample variance of the βn's around the known mean b. It is easy to

take draws from inverted gamma and inverted Wishart distributions, as

shown before.

3. βn|b,W . The posterior for each person's βn, conditional on their choices

and the population mean and variance of βn, is

K(βn|b,W, yn)αL(yn|βn)f(βn|b,W ), (5.12)
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There is no simple way to draw from this posterior, and so the MH

algorithm is used. Note that the right-hand side of (5.12) is easy to

calculate: L(yn|βn) is a product of logits, and f(βn|b,W ) is the normal

density. The MH algorithm operates as follows:

(a) Start with a value β0
n.

(b) Draw K independent values from a standard normal density, and

stack the draws into a vector labeled η1.

(c) Create a trial value of β1
n as β̃1

n = β0
n + ρLη1, where ρ is a scalar

speci�ed by the researcher and L is the Choleski factor of W . Note

that the proposal distribution is speci�ed to be normal with zero

mean and variance ρ2W .

(d) Draw a standard uniform variable µ1.

(e) Calculate the ratio

F =
L(yn|β̃1

n)ρ(β̃1
n|b,W )

L(yn|β̃0
n)ρ(β̃0

n|b,W )
.

(f) If µ1 ≤ F , accept β̃1
n and let β1

n = β̃1
n. If µ

1 > F , reject β̃1
n and let

β1
n = β0

n.

(g) Repeat the process many times. For high enough t, βtn is a draw

from the posterior.

We can know draw from the posterior for each parameter conditional on

the other parameters. We combine the procedures into a Gibbs sampler for

the three sets of parameters. Start with any initial values b0, W 0, and β0
n. The

tth iteration of the Gibbs sampler consists of these steps:

1. Draw bt from N(β̃t−1,W t−1/N), where β̃t−1 is the mean of the βt−1
n 's.

2. Draw Wt from IW (K + N, (KI + NSt−1)/(K + N)), where St−1 =∑
n(βt−1

n − bt)(βt−1
n − bt)′/N .

3. For each n, draw βtn using one iteration of the MH algorithm previously

described, starting from βt−1
n and using the normal density f(βn|bt,W t).
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These three steps are repeated for many iterations. The resulting values

converge to draws from the joint posterior of b, W , and βn∀n. Once the con-
verged draws from the posterior are obtained, the mean and standard deviation

of the draws can be calculated to obtain estimates and standard errors of the

parameters. Note that this procedure provides information about βn for each

n, similar to the procedure using classical estimation.

5.5 Challenges in Estimating VTTS

The value of time in transport has usually been estimated though classical

multinomial logit which, assuming homogeneous tastes, can derive a single

value of time for a �ctitious average individual. Recently, the mixed logit

model has been applied with di�erent speci�cations and various degrees of

sophistication. Although the theory is in general relatively clear, practical

speci�cation and estimation represent real challenges. Some important topics

are discussed here focusing in the objective of estimating the VTTS.

5.5.1 Identifying Preference Heterogeneity

The most popular way of acknowledging systematic variations on preferences

(or systematic taste variations) has been (within a speci�c trip purpose) to

segment a sample based on exogenous criteria such as income, trip length and

time of day for passengers and in length, type of commodity and ownership

(own account or hire) for freight. This segmentation is achieved through es-

timating separate models for each segment or by interacting the travel time

with an individual socio-economic or speci�c trip characteristics (Gaudry et al.,

1989; Revelt and Train.K., 1998; Ortuzar and Willumsen, 2001; Amador et al.,

2004). Hensher and Goodwin (2004) note that in practice, the selection of the

number and dimensions of discrimination is not usually driven by questions

of statistical diagnostics, research hypothesis and evidence. It is constrained

by the speci�c properties of the forecasting and appraisal models within which

the empirical values will be used.

However, even after controlling for observable characteristics, there is a lot

of heterogeneity left. This heterogeneity is due to factors which can not be
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observed or are di�cult to measure. In these cases, this heterogeneity can take

form of a random parameter. One disadvantage of specifying random parame-

ters is that information is not provided about factors determining these varia-

tions. To maximise the explanatory power of the model, one should explain as

much systematic variation as possible, and allow for a random variation where

it is signi�cant.

5.5.2 Selecting Random Parameters

McFadden (2000) propose a Lagrange Multiplier test as a basis for accept-

ing/rejection the preservation of �xed parameters in the mode. Brownstone

(2001) provides a succinct summary of the test. These tests work by construct-

ing arti�cial variables as in equation (5.13):

zn = (xin − xi)2, with xi =
∑
j

xjnPjn, (5.13)

and Pjn is the conditional choice probability. The conditional logit is then

re-estimated including these arti�cial variables, and the null hypothesis of no

random coe�cients on attributes x is rejected if the coe�cients of the arti�cial

variables are signi�cantly di�erent from zero. The actual test for the joint

signi�cance of the variables can be carried out using either a Wald or Likelihood

Ratio test statistics. Brownstone (2001) suggests that these tests are easy

to calculate and appear to be a quite powerful omnibus test; however they

are not as good for identifying which error components to include in a more

general mixed logit speci�cation. Another test (Hensher and Greene, 2003)

is to assume all parameters are random and then examine their estimated

standard deviations, using a zero-based t-test for individual parameters and

the likelihood ratio test to establish the overall contribution of the additional

information. While appealing, this is very demanding for a large number of

explanatory variables and might be problematic in establishing the model with

a full set of random parameters.



180 Chapter 5. Estimating the Value of Travel Time Savings

5.5.3 Selecting the Distributions of the Random Param-

eters

If there is one single issue that can cause much concern it is the in�uence of the

distributional assumptions of random parameters (Hensher and Greene, 2003).

Except for the sign of VTTS, we appear to have no theoretical arguments to

support one distribution or another. However, there is evidence of a left skewed

distribution of VTTS. Abraham and Blanchet (1973) proposed a lognormal

distribution in analogy with the income distribution. In e�ect, it is quite

intuitive that there is substantially more individuals with relatively low value

of time and not prepared to pay much to save time; in contrast a smaller

number of individuals are willing to pay high tolls. This evidence has been

being validated by non-parametric studies (Fosgerau, 2007) and by good �ts

provided by left skewed distributions (lognormal, but also Sb, Raylagh and

others).

The lognormal distribution is very popular for the following reasoning (Hen-

sher and Greene, 2003). The central limit theorems explain the genesis of a

normal curve. If a large number of random shocks, some positive, some neg-

ative, change the size of a particular attribute, x, in an additive fashion, the

distribution of that attribute will tend to become normal as the number of

shocks increases. But if these shocks act multiplicatively, changing the value

of x by randomly distributed proportions instead of absolute amounts, the cen-

tral limit theorems applied to y = ln(x) tend to produce a normal distribution.

Hence x has a lognormal distribution.

The substitution of multiplicative for additive random shocks generates a

positively skewed, leptokurtic, lognormal distribution instead of a symmet-

ric, mesokurtic normal distribution. The degree of skewness and kurtosis of

the two-parameter lognormal distribution depends only on the variance, and

so if this is low enough, the lognormal approximates the normal distribution.

Lognormals are appealing in that they are limited to the non-negative domain;

however they typically have a very long right-hand tail which is a disadvantage

(especially for willingness-to-pay calculations). It is this large proportion of

�unseasonable� values that often casts doubt on the appropriateness of the log-

normal. Moreover, in parameter estimation, experience has demonstrated that
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entering an attribute in a utility expression speci�ed with a random parame-

ter that is lognormally distributed, and which is expected a priori to produce

a negative mean estimate, typically causes the model either not converge or

converge with unacceptable large mean estimates. The trick to overcome this

is to reverse the sign of the attribute prior to model estimation.

The simplest way to derive VTTS is to take the ratio of the means of

the parameter distributions involved. This is not the mean of the VTTS,

but the VTTS derived from coe�cients of the �average individual� for each

parameter. If the denominator is a constant, as in our case, both values are

identical. If it is distributed, the distribution of the ratio can be computed by

simulation, as in Sillano and Ortuzar (2005). Revelt and Train.K. (2001) cites

three reasons for �xing the cost coe�cient: (1) As Ruud (1996) points out,

mixed logit models have a tendency to be unstable when all coe�cients are

allowed to vary. Fixing the price coe�cient resolves this instability. (2) If the

price coe�cient is allowed to vary, the distribution of willingness to pay is the

ratio of two distributions, which is often inconvenient to evaluate. With a �xed

price coe�cient, willingness to pay for an attribute is distributed the same as

the coe�cient of the attribute. (3) The choice of distribution to use for a price

coe�cient is problematic. The price coe�cient is necessarily negative, such

that a normal distribution is inappropriate. With a lognormal distribution

(which assures that the price coe�cient is always negative), values very close

to zero are possible, giving very high (implausibly high) values for willingness

to pay.

However, as noted by Train and Weeks (2004), this restriction is counter-

intuitive as the marginal utility of money can vary across respondents according

to factors that can be independent of observed socio-economic covariates. A

�xed price coe�cient implies that the standard deviation of unobserved util-

ity, which is called the scale parameter, is the same for all observations; if the

price coe�cient is constrained to be �xed when in fact scale varies over obser-

vations, then the variation in scale will be erroneously attributed to variation

in willingness to pay.

In this context the choice of the distribution is dictated not only by the

researcher's preferences but also by the model characteristics and uses. Number

of recent works (for example Hensher and Greene (2003); Hess et al. (2005)
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demonstrate that the choice of distributional assumptions have a signi�cant

impact on estimation results, particularly and predictably, in the inferences

that can potentially be drawn regarding extreme values. Although selecting

distributions for individual parameters is challenge enough, it is compounded

when interest focuses on ratios of random parameters, as in the derivation of

estimates of willingness to pay (WTP).

5.5.4 Revealed Preference Data

The main advantage of revealed preference data is that it represents the ac-

tual choices. Flyvbjerg et al. (2003) for example, point the stated preference

approach as a main source of errors in forecasting due to divergences between

the stated and the actual behaviour. However, one of the main problems with

revealed data is that it usually does not provide a high variation in the choice

set (usually no more than two or three options) and in the attributes of these

options, making the identi�cation of random variations very di�cult.

5.5.5 Optimization Problems

With mixed logit models (especially those with lognormal distributions), max-

imization of the simulated likelihood function can be di�cult numerically. Of-

ten the algorithm fails to converge for various reasons. The choice of starting

values is often critical, with the algorithm converging from starting values that

are close to the maximum but not from other starting values. The issue of local

versus global maxima complicates the maximization further, since convergence

does not guarantee that the global maximum has been attained. This fact em-

phasizes the importance of appropriate starting values. In e�ect in the mixed

logit model, the use of inadequate starting points may cause the model not

converge or stop in a local maximum.

5.5.6 Imposing Constraints

This point is directly related to the choice of the distributions. In practice

we often �nd that any one distribution has strengths and weaknesses. The



5.5. Challenges in Estimating VTTS 183

weakness is usually associated with the spread or standard deviation of the

distribution at its extremes including behaviourally unacceptable sign changes

for the symmetrical distributions. One appealing 'solution' is to constrain the

distribution in terms of domain (for instance, a truncated normal) or disper-

sion (constraining the coe�cient of variation). Hensher and Greene (2003)

simulated the resulting VTTS with lognormal distributions and derived and

unusually high mean. They managed to lower it to more plausible values by

truncating the simulated distribution, but found it very sensitive to this kind

of constraint.

5.5.7 Priors

The introduction of prior knowledge is intrinsic to even the classic analysis.

First, the analyst usually has some priors about the result (i.e. one should

expect that the value of travel time to be positive and to lay within a reasonable

set) and second, the set of hypothesis and parameters need to the estimation

of mixed logit models like the form of the distributions and the starting values

indirectly represent a prior hypothesis.

5.5.8 Advantages and Problems of Bayesian Procedures

The Bayesian procedures avoid two of the most prominent di�culties associ-

ated with classical procedures. First, the Bayesian procedures do not require

maximization of any function. Second, desirable estimation properties, such

as consistency and e�ciency, can be attained under more relaxed conditions

with Bayesian procedures than classical ones. Maximum simulated likelihood

is consistent only if the number of draws used in simulation is considered to rise

with sample size; and e�ciency is attained only if the number of draws rises

faster than the square root of sample size. In contrast, the Bayesian estimators

that we describe are consistent for a �xed number of draws used in simulation

and are e�cient if the number of draws rises at any rate with sample size.

Nevertheless, to simulate relevant statistics that are de�ned over a distri-

bution, the Bayesian procedures use an iterative process that converges, with

a su�cient number of iterations, to draws from that distribution. This con-
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vergence is di�erent from the convergence to a maximum that is needed for

classical procedures and involves its own set of di�culties. The researcher can-

not easily determine whether convergence has actually been achieved. Thus,

the Bayesian procedures trade the di�culties of convergence to a maximum

for the di�culties associated with this di�erent kind of convergence. The re-

searcher will need to decide, in a particular setting, which type of convergence

is less burdensome.

As we have shown, the Bayesian procedures provide an estimator whose

properties can be examined and interpreted in purely classical ways. The re-

searcher can therefore use Bayesian procedures to obtain parameter estimates

and then interpret them the same as if they were maximum likelihood es-

timates. From an estimation perspective, for some behavioural models and

distributional speci�cations, Bayesian procedures are far faster and, after the

initial learning that a classicist needs, are more straightforward from a pro-

gramming perspective than classical procedures. For other models, the classi-

cal procedures are easier. The di�erences can be readily categorized, through

an understanding of how the two sets of procedures operate. The researcher

can use this understanding in deciding which procedure to use in a particular

setting.

However, the use of Bayesian procedures within a Bayesian perspective

provides the fascinating opportunity of properly integrating prior beliefs in the

analysis. The use of bayesian estimation with a bayesian perspective, which

means that the researcher wants to update his prior information based on the

new data (and do not use a di�use prior), also rise some questions.

5.5.9 The Role of the Alternative Speci�c Constant

The alternative speci�c constant in a logit-like model assures that the market

share estimated by the model corresponds to the actual (sample) market share,

for each alternative. It captures the captive market share (which is not a�ected

by the concurrent modes) and also the deterministic part of the utility function

which is not explained by the explanatory variables. While this property is very

suitable in many market analysis, in tra�c forecasting it can poses a major

problem. Suppose we could include all the decision variables (usually cost,
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time, alternative speci�c variables and decision maker speci�c variables), there

are few reasons to believe that users have a preference for a road or another

(behaviour e�ects like habit can a�ect the choice in the short term but have

few implications in the long term). A�ecting a bonus for one option reduces

the part of the population willing to change of mode. This characteristic is few

realistic and is not compatible with traditional assignment procedures which

computes the generalized cost for each route and allocate tra�c based on it.

5.6 The Survey

Our empirical analysis relies on a Revealed Preference study based on an

Origin-Destination survey. The approach given is the concurrence between

a tolled motorway and a free national road (autoroute and route nationale,

in French, respectively), in order to compare the trade-o� between a faster

and tolled and a slower free option. This survey was realized in two pairs

Motorway/National Route:

� A28 (Toll bridge of Alençon Nord) and N138, direction Le Mans-Alençon

;

� A11 (Toll bridge of Ancenis) and N23, direction Angers-Nantes ;

These points are illustrated in �gure 5.2. We interviewed 1173 truck drivers

about:

� The origin and the destination of the trip (last and next points of loading/

unloading);

� OD's frequency;

� Own account or hired;

� Number of employees of the transport company;

� Kind of product transported;

� Type of vehicle (visual observation).
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Figure 5.2: Survey's Location.

The traditional econometric approach to estimate the parameters of the

discrete choice model is the maximum likelihood, producing the value of the

parameters for which the observed sample is most likely to have occurred.

Assuming that the observations in the sample are drawn independently at a

random from the population, the likelihood of the sample is the product of

individual likelihoods.

In an Origin-Destination survey, observations are collected based on their

ex-ante choice, which characterizes a choice-based sample. The problem of

�nding tractable estimation procedure possessing desirable statistical proper-

ties is not an easy one, and the state of the art is provided by the papers of

Coslett (1981) and Manski and McFadden (1981).

It has been found in general that maximum likelihood estimators speci�c

to choice-base sampling are impractical, except in very restrict circumstances,

due to computational intractability. However, if the analyst knows the fraction

of the decision making population selecting each alternative then a tractable

method can be introduced. The approach modi�es the familiar maximum

likelihood estimator of random sampling by weighting the contribution of each
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observation to the log-likelihood by the ratio Qi/Si, where the numerator is

the fraction of the population and the denominator the fraction, of the sample

selecting option i. This approach is applied in this study. Sample sizes and

count data for the motorway (M) and free road (R), are reported in table 5.1.

Table 5.1: Sample and tra�c count data
Sources: Co�route; Service des Routes de la DDE de la Sarthe;

Service des Routes de la DDE de Loire Atlantique.
sample Count Weight Integer Weight

M 400 (50%) 2412 (76%) 6.03 6
Ancenis

R 395 (50%) 767 (24%) 1.94 2

M 183 (48.5%) 962 (50%) 5.25 5
Alençon

R 195 (51.5%) 954 (50%) 4.89 5

M 583 (50%) 3374 (66%) - -
Total

R 590 (50%) 1721 (34%) - -

Once the sample has been weighed, we remove from the analysis those

observations presenting one of the following characteristics:

� No real choice, i.e. the other alternative is too expensive or inexistent;

� Local tra�c, distance shorter than 25 km;

� Recorded OD pair disconnected to the site of survey.

After removing these observations, the sample was reduced to 1027 obser-

vations, shared as shown in table 5.2.

Table 5.2: Final Sample
sample Weighted Sample

M 385 2310
Ancenis

R 343 686

M 170 850
Alençon

R 129 645

M 555 3160
Total

R 472 1331

Table 5.3 presents the summary statistics for the main variables in the

sample.
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Table 5.3: Summary of descriptive statistics
Variable Mean Median Std dev Min Max De�nition

Travel Cost (TC) 34.49 23.01 31.27 0.87 290.68 Toll in e
Travel Time (TT) -1.24 -0.93 1.19 -8.02 7.92 ∆ time in hours

distance 343.96 249.50 317.45 25.80 2227.40 distance in km
loaded 0.91 1 0.28 0 1 1 if loaded
hire 0.75 1 0.43 0 1 1 if for hire

5.7 Econometric Results

5.7.1 Maximum Likelihood estimations

We introduce the variables �hire� and �loaded� as sources of systematic vari-

ation as we could imagine that transport for hire (against own account) and

loaded vehicles (against empty) have higher values of time. The variable dis-

tance was also tested as a source of systematic variation but not kept in the

model due to a high correlation (0.81) with the travel cost. This fact represents

a weakness of the revealed preference approach as discussed before. Using the

Lagrange Multiplier test presented before, we have found that the travel time

parameter was the only one presenting a signi�cant random variation over the

population.

As pointed by many authors, the simplicity of the MNL represents an

strong advantage due to its properties and well-known estimation procedure;

in this sense, the classic MNL shall be the starting point of any discrete choice

estimation. We �rst estimate the model without the sources of systematic

heterogeneity. The results of this model are shown in model MNL(1) in table

5.4. The value of time estimated by this model is e52 /h.

We then add the interaction between the travel time and the variables

�loaded� and �for hire� in the model MNL(2). We can see that these factors

strongly a�ect the value of time, which can be whiten as:

V TTSMNL = 46 + 10loaded+ 16hire (5.14)

The average in the sample using MNL (2) is e67.1, ranging from e46 for

empty and e72 for hire and loaded.
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Results estimated by MNL are extremely close to those �nd by Alvarez

et al. (2007) in Spain (e64.1) using the same model, but far higher than the

national standard values used in both countries.

We then estimate models with distributed coe�cients. We tested the Mat-

lab code developed by Kenneth Train 6 and the R code developed by Ryuich

Tamura. The Matlab code of Kenneth Train was kept for the �nal estimations.

We �rst estimated, as usual, considering the travel time parameter as log-

normally distributed. Model 5.15 uses only time and cost as explanatory

variables. Model 5.16 includes interactions. Note that in the models using

lognormal distributions, the travel time was multiplied by -1 to get positive

coe�cients.

V TTSML =
1

0.0017
e2.87+1.99N(0,1) (5.15)

V TTSML =
1

0.024
e1.98+0.10loaded+0.21hire+1.80N(0,1) (5.16)

Results show unacceptable mean and variance. This result con�rms the dif-

�culty in estimating mixed logit models with lognormal distributions discussed

before.

We tried also to estimate the model using the cost variable following a

lognormal PDF and the cost normally distributed and the time lognormally

distributed. In both cases we failed to achieve convergence. There is a folk

concept �oating among researchers in the �eld that the variance of random

coe�cients are identi�ed empirically only if with repeated choices for each

person. This concept is probably too severe, but it indicates the di�culty we

face.7

5.7.2 Bayesian Estimations

Within the Bayesian approach, instead of proceeding adding constraints or

changing the PDF in order to �nd more reasonable values, we include our

6Available at http://elsa.berkeley.edu/�train/software.html
7based in a discussion with Kenneth Train.
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beliefs as �priors�.

As a prior distributions for the Bayesian estimations we adopt as mean the

current value used in France. Jiang (1998) �nds an average VTTS of 195 FF,

or approximately e30, which is also the value adopted as the governmental

recommendation in the �Rapport Boiteux� (Commissariat Général du Plan,

2001). Since the VTTS from a linear in parameters utility function is the ration

between the time and cost estimates, we decided to keep the cost parameter

from the model (ML); the mean of the prior distribution for time becomes the

mean of the value of time used today (e30) in�ated by the economic growth

between 2000 and 2005 (e32.3) multiplied by 0.01. We specify a large standard

deviation (3.0) in order to di�use the prior. The result of this estimation is

shown in model HB. The estimation was performed using the Matlab code

developed by Kenneth Train. It should be noted that the HB reproduces the

maximum likelihood estimations when the coe�cients are considered �xed and

when the prior information is very di�use and the simulation is long enough.

We have used a very large number of draws in order to be able to identify the

variance.

Note that the approach adopted to represent the real market share, weight-

ing observations (and then the likelihood function) was derived and is usually

applied for maximum likelihood estimations. Although we believe the same

approach can be applied to Bayesian estimations without further concerns, we

did not �nd any application or theoretical discussions on this point.

We �rst estimate the model considering the cost coe�cient as �xed and the

time as lognormally distributed. Results show that the VTTS distibution (in

e/h) can be written as:

V TTSHB =
1

0.03
e0.294+0.083loaded+0.175hire+0.0059N(0,1) (5.17)

Even after a very high number of draws, the bayesian algorithm was unable

to get apart from the initial solution and to identify the heterogeneity (small

variance). The average value of time in the population is 54.6e. Figure 5.3

shows the VTTS distribution when both loaded and hire dummy variables are

equal to zero.

We then estimate the model with the cost coe�cient following a normal
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Figure 5.3: VTTS Distribution for empty and own account by ML

distribution and the time coe�cient following a lognormal PDF.

V TTSHB =
1

N(0.303, 0.027)
e2.207+0.256loaded+0.196hire+0.297N(0,1) (5.18)

Although the ratio of a lognormal by a normal distribution is not a trivial

analytical issue, we can use simulation to calculate the ratio of points the both

distributions and then derivate the resulting distribution, taking in account the

correlation among the coe�cients (-0.0136). We used the trial version of @Risk

to perform this simulation (Latin Hypercube sampling with 10000 iterations).

The resulting distribution when both load and own account dummy variables

are one is given in �gure 5.4 and the resulting distribution when both load

and own account dummy variables are null is given in �gure 5.5. Figure 5.6

shows the distribution for the average values of load and own account dummy

variables in the sample.

This result seems to be much more reliable than the previous since the so-

lution obtained is quite far from the priors and it accommodates the variations

of the utility of money in the sample.

Estimation results are given in table 5.4. TT is the travel time and TC

is the travel cost; standard errors are given in parentheses. Note that the
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Figure 5.4: VTTS Distribution for loaded and hire by HB.

Figure 5.5: VTTS Distribution for empty and own account by HB.

log-likelihood for the Bayesian estimations is simulated, in order to be able to

compare models in a single base.

5.8 Discussion

In line with many recent studies in this �eld, we faced here many di�culties

in estimating the VTTS, especially when the mixed logit model is applied; we

faced many convergence problems and even when convergence was achieved,

the values provided were unrealistic. The Bayesian estimation provides a very

attractive way of avoiding these optimization problems, accommodating both

cost and time variables following PDFs, most in line with the theory.

Two points are of particular interest in our study. The di�erences between
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Figure 5.6: VTTS Distribution for average load and hire dummies by HB.

the constant and the distributed values of time in forecasting demand and the

magnitude of the value itself.

It is easy to see that if the researcher believes that the average value of time

is e52 (from model MNL(1)), but in fact it follows the distribution represented

in �gure 5.6 than instead of 50%, only 29,7% of the population will be willing

to pay more than e52, leading to a rude demand overestimation. However if

the atual values are given by the distribution in �gure 5.6 but the researcher

applies the current value used in France (e32) then most of users will actually

be willing to pay more than this value, and the demand will be underestiamted.

Many recent results in the literature converge to the conclusion that using

constant instead of distributed values of time tends to overestimate the de-

mand. Two e�ects have to be isolated. First the skewness of the distribution.

If the means are roughly the same, the constant value (or symmetrical distri-

bution) will tend to overestimate the market share. Another point is whether

the classic logic model and the distributed parameters model tend to produce

di�erent means. International experience suggests that this is not a general

conclusion but depends on the nature of the data and speci�cations used in

each study. For example Algers et al. (1998) and Gaudry et al. (1989) also

found that more restrictive models lead to higher average values. However

Amador et al. (2004) and Hensher (2001a,b) conclude that more restrictive

models tend to underestimate the value of time; �nally, other authors have

found no signi�cant di�erences between the values produced by di�erent mod-

els (Train, 1998; Carlsson, 1999).
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Table 5.4: Econometric results
MNL ML(1) ML(2) HB(1) HB(2)

PDF TT �xed Lognormal Lognormal Lognormal Lognormal
PDF TC �xed �xed �xed �xed Normal
TT Mean 0.4613 2.8797 1.9833 0.2941 -2.2069

(0.0619) (0.7202) (0.2439) (0.0041) (0.9283)

Sdt Dev 1.9933 1.8072 0.0059 0.2968
(0.1566) (0.1253) (0.0011) (0.0603)

TC Mean -0.01 -0.0017 -0.0238 -0.0302 0.3029
(0.0031) (0.0068) (0.0065) (0.003) (0.0669)

Sdt Dev 0.0267
(0.0113)

Loaded 0.1004 0.1079 0.0833 0.2557
(0.0216) (0.0456) (0.0243) (0.0819)

Hire 0.163 0.2103 0.1746 0.1966
(0.0203) (0.0436) (0.0215) (0.071)

Intercept -0.1347 -4.3057 -2.4119 -0.2703 -3.2377
(0.0576) (2.4688) (0.3957) (0.063) (0.3002)

LL -2467 -2359 -2338 -2529 -2242
(standard errors in parentheses)

Using wrong national standard values, of course, can lead to either over

or underestimation. This point lead us to discuss the magnitude of the value

of time in freight transport in France. Our results suggest that they should

be reviewed upwards. Recent studies in other European countries have found

similar results. Alvarez et al. (2007) found e64.1 in Spain, Fowkes et al.

(2004) obtain values ranging from e55 to e200 in UK. We can conclude that

the current standard French value can be on a downward bias.



5.9. Conclusions 195

5.9 Conclusions

The value of travel time savings is a fundamental concept in transport eco-

nomics and its size strongly a�ects the socio-economic evaluation of transport

schemes. Financial assessment of tolled roads rely upon the value of time as

the main (or even the unique) willingness to pay measure. Values of time

estimates, which primarily represent behavioural values, as then increasingly

been used as measures of out-of-pocket money. In this setting, one of the main

issues regarding the value of time is its distribution over the population.

Logit is by far the most applied discrete choice model used in estimations

of values of time. Its popularity is due to its easy closed form. However, using

a single value (representative of a mean or median) may lead to signi�cant

errors in evaluating the optimal toll and the revenue from a tolled road. In

this perspective, the generalised used of logit models in the context of tolled

infrastructure may lead to consequent tra�c and revenue forecast errors.

The ambition of using distributed values for the parameters of discrete

choice models associated with the recent progresses in hardware and software

performances lead researchers to focus in more �exible structures. In this way

a partial simulation partial closed form discrete choice model called mixed logit

has been developed, allowing for distributed coe�cients, estimated by simu-

lated likelihood. In practice, however, the use of such models has been limited

to cases where the kind of data associated with the choice of the distribution

lead to model convergence and coherent results. Researchers and practition-

ers usually want to estimate lognormal distributed values of time, which in

practice present convergence problems and tend to produce unacceptable high

values for some share of the population. In this context, the use of constraints

under the form of censure or caps for the standard deviation has been the solu-

tion �nd to overcome such problems. These constraints are then set according

to the researcher's beliefs and prior works. The introduction of à priori knowl-

edge is intrinsic to the econometric analysis. First, the analyst usually has

some à priori about the result (i.e. one should expect that the value of travel

time to be positive and to lay within a reasonable set) and second, the set of

hypothesis, constraints and starting values of mixed logit models represent a

priori hypothesis.
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Bayesian estimations have some strong advantages compared to the classi-

cal techniques; they allow for distributed coe�cients but the estimation does

not require any maximization, rather, draws from the posterior are taken un-

til convergence is achieved, avoiding convergence problems and sample sizes

necessary to achieve the convergence are substantially smaller. Moreover, they

can properly integrate a priori knowledge on the parameters.

In this chapter we present the main econometric models currently used for

VTTS estimation. We apply these methods to the estimation of the value of

travel time savings in freight transport in France. For this analysis a revealed

preference study on two couple of tolled motorways and free roads was con-

ducted. For the Bayesian estimation, we conjugate the data from this survey

with the precedent studies guiding the current value used in France.

Estimations with mixed logit faced many di�culties, as expected. These

di�culties could be avoided using the Bayesian procedures, providing also the

opportunity of properly integrating a priori beliefs.

Results show that 1) using a single constant value of time, representative

of an average, can lead to demand overestimation, 2) the estimated average

value of time of freight transport in France is about e45, depending on the

load/empty and hire/own account variables, which implies that 3) the standard

value recommended in France should be reviewed upwards.


