Chapter 2

Notions and Framework for

Supervised Learning

This chapter presents the notions of supervised automatic learning on which our thesis is
based upon. We then lay out the framework for supervised learning and discusses some
ezxisted supervised learning techniques. Next, we discuss the criteria for evaluating a model
and the important bias/variance trade-offs and model complexities in supervised learning.
We discuss in particular the role of variance in classification error of a model and present

ezisting solutions based on aggregation techniques to cater for high variances.

2.1 Supervised Learning

Supervised learning is an effective learning technique that uses machine learning to automat-
ically discover correlations between readily-available features or attributes and the quantity
of interest or target attributes (to be predicted). The goal of supervised learning is to predict
the value of a target measure based on a number of input measures consisting of a number
of sample observations. The target measure could be numerical, discrete or categorical. As
mentioned above, this learning of the input features is performed on a set of sample obser-
vation, where each tuple from the sample consists of an input vector X; and a corresponding
class label Y;. The input vector contains measurable features of the system under consider-

ation. If the target is categorical, the learning becomes a classification problem. Otherwise,
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if the target feature is numerical or continuous then regression based learning is performed.

Thus, in order to perform training on a classifier, we have to find a mapping from a
number of input features to target feature and this is done while trying to minimize the
overall error rate. This is called as misclassification rate in case of classification. The goal
of the learning algorithm is to accurately predict unseen observations or samples. The main
criterion used to assess learning algorithms is their prediction accuracy, i.e. the way the
model they produce generalizes to unseen data. Another important criterion, especially in
the context of KDD, is the interpretability of this model. Computational efficiency and
scalability are also of great concern, especially when it comes to apply learning algorithms

on very large dataset.

2.1.1 Framework for Supervised Learning

Let X(.) be an attribute value on the real set . For each example w of a learning set ()
drawn independently from a population, X (w) is the value taken by the attribute X (.) at
w. For example, if X (.) is the attribute corresponding to the height of a set of people in
inches, then the meaning of X (w) = 110 is that w is 110 inches in height.

In the supervised learning problem, usually have a specific attribute C|(.), which is called
the endogenous variable or class and it associates a belonging class to each element. This is
precisely the attribute we want to predict. Unlike the explanatory attributes X (.) which can
be symbolic or numeric, the class C|(.) is usually symbolic and it takes its values in the finite
set ¢y, ..., ¢y called the class space. If an example belongs to a class ¢, we have C(w) = ¢
and reciprocally. We also suppose that C'(w) is known for all w of the learning sample set

Q. Thus, we try to build a model, denoted by ®, such that ideally we have:

C() = BX1()s s Xp())).

2.2 Some Supervised Learning Techniques

In the following subsections we introduce some popular supervised learning techniques that

we often use for comparison and other purposes in our thesis.
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Figure 2.1: A decision tree generated from a two class problem.

2.2.1 Decision Tree Induction

Decision tree learners are widely used in solving classification problems with the classifiers
represented as trees. They recursively divide attributes at each internal node in the tree
based on some criteria. In a tree, leaf nodes represent classification decisions. Pruning
methods are used to prevent over-fitting of training data. Although decision tree learners
are not always the most competitive learners in terms of accuracy, they are computationally
efficient and interpretability. These classifiers suffer in accuracy not because of bias but high
variance. Thus, because of this high adaptivity to the learning sample, a small perturbation
of the learning sample may result in very different decision trees.

There are several existing approaches to improve accuracy of decision trees by reducing
their variance such as pruning which removes some of its test nodes so as to find the best
compromise between bias and variance. However, a more efficient way to improve the
accuracy of decision trees is to aggregate the predictions given by several trees. Various
techniques have been proposed in the literature to generate different decision trees from the
same learning sample for aggregation and they often give very impressive improvement of

accuracy [36, 97]. Nevertheless, they also destroy some of the main advantages of decision
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trees, namely computational efficiency and interpretability.
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Figure 2.2: An example classification boundary generated by this decision tree.

As illustrated in Figure 2.1, the learning sample (1pg is iteratively split at each step
by means of one of the predictive attributes Xi,...., X,. The goal is to separate the target
feature as much as possible by using some criteria such as entropy. The leaves of the trees
obtained at each step of the growing process define a partition that becomes finer with each
recursion. The root of the tree corresponds to the partition Node; = Q5. The tree given in
Figure 2.1 partitions {2;g in two subsets corresponding to the nodes Nodes and Nodes. In
leaf Nodey for example, we have the set of cases that take values X; = yes and Xy < 100.
Thus, we can say that the rule for firing the leaf Nodey is that 'if attribute X7 = yes and if
X5 < 100°. Thus at any step, the partition at a node Nodegy, is derived from the previous
one by seeking the best leaf-attribute tuple such that the splitting of the previous node
Nodepre, according to the values of X; maximizes the gain of information on the target

variable between the current node Nodey,r and the previous node Nodey,e,. The gain of
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information is usually measured as the reduction in uncertainty for the target variable or as
the increase in the strength of association between the partition and the target variable. The
growing process stops when the criterion can no longer be improved or when some stopping
criterion is reached.

In Figure 2.2, another 2 class based example shows a visualization of how the search
space is recursively condensed and the target features (circle and triangle) are separated at
each step or node. Thus, at each node a perpendicular cut segments the classes into two
regions and continue until a significant improvement can be made in the separation of the

class values.

2.2.2 Naive-Bayes Classifier

Naive-Bayes classifiers are simple, effective, efficient, robust, and support incremental train-
ing [140]. Thus, because of these multiple characteristics, they have been used in numer-
ous classification tasks. These classifiers have an attribute independence assumption, thus,
naive-Bayes classifiers need only to estimate probabilities about individual attributes and
the class instead of attribute combinations. In the case of qualitative attributes, their prob-
abilities can be estimated from the corresponding frequencies. However, for quantitative
attributes, the these prior probabilities are estimated by using a probability density esti-
mation or discretization. Probability density estimation requires an assumption about the
form of the probability distribution from which the quantitative attribute values are drawn.
Discretization transforms a continuous attribute into discrete or qualitative attributes where
each discretization point corresponds to an interval of values of the continuous or quantita-
tive attribute.

In naive-Bayes learning, a set of instances with their classes, the training data, is pro-
vided and a test instance is presented. The learner predicts its class according to the prior
probability model provided by the training data. Thus, naive-Bayes classifiers estimate the

probability of a class ¢ given an instance x by:

p(C =c|X =) o p(C =) [1F-; H(X; = 2;|C = ¢), where

. . _ [p(Xi=z;|C=c), if X; is qualitative
H(X; =z;|C=c) = {f(xi:xi\c:c), if X is quantitative
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2.2.3 K-Nearest Neighbors

The k-nearest neighbors algorithm (k-NN) [12, 43] is a method for classifying instances by
comparing them to the closest training instances in the feature space. Considering a learning
sample 7 and a fixed value of k, the KNN method considers its k nearest neighbors in
the learning set and predicts at each point an aggregation of those outputs. This is achieved
according to some distance measures such as the euclidean, hamming distance etc. However,
a problem with the voting method is that the classes with more frequent examples tend to
dominate the prediction. In order to cater for this problem, weights are assigned to the
classification taking into account the distances to eack of the k nearest neighbors.

When we are dealing with continuous attributes, euclidean distance is mostly used with

a weight W such that:
d= Z?:l W x (xz — fi)g

The optimal value of k is an important problem, which we elaborate in chapter 10.
There are various techniques that cater to this problem e.g. cross validation but the optimal
value of k will depend on the learning sample size N and on the dimensionality of the input

features.

2.3 Criteria for Evaluation of the Learning Techniques
Three main criteria are used to compare learning algorithms:

1. Accuracy: Rate of correct predictions and reduction in the error.

2. Computational efficiency and Complexity: The time needed to learn a model but also

the time to apply this model to new cases.
3. Interpretability: if it gives comprehensible models or not.

4. Robustness: The behavior of learning algorithm on unseen data over training data.

In this thesis, new improvements or algorithms will be discussed having in mind these

criteria plus additional features discussed later. However, accuracy and complexity have
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a trade-off between them. As with our techniques presented later an increase in accuracy
could easily increase the complexity and vice versa. Thus, depending on the nature of the
problem we can decide which of the two factors are more desirable to the cause than the

other.

2.4 Bias and Variance in Supervised Learning
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Figure 2.3: On the left a too simple model with high bias and on the right a too complex model

with high variance.

In order to explain the concept and complexity of the bias/variance trade-off in super-
vised learning we take the help of figure 2.3 that shows an example of a two class problem
and our aim is to separate or classify these two classes. In this example we use classic
decision tree classifier to separate or classify the target features. The left part of figure 2.3
shows one such model. With a simple linear model consisting of one split, it is impossible
to separate perfectly the two classes. Thus, this model is not satisfactory to solve this task
as the separability of classes is not satisfactory and is far from the optimal model of figure
2.2. This phenomenon responsible for the error in this case is called the bias.

Now, the right part of figure 2.3 shows a more complex decision tree model. This time,
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the classification boundary perfectly separates elements of the different classes. Like the
linear model however, this model is still not appropriate. This time, actually, the model is
too complex and hence it overfits the data. If we draw another random learning sample for
the same problem, then it is very likely that the model found by the same learning algorithm
will be very different from this one. In this case, we say that the learning algorithm suffers
from variance.

Thus, both bias and variance are sources of error and hence they should be minimized.
Thus, there is an obvious trade-off between these two effects which must be taken into
account. To achieve this objective prediction aggregation methods or ensemble learning
techniques are used to reduce the variance. This approach consists of building several models
for the same sample and classify a new example by taking into account the output class
which receives the majority of votes among all models. Among the most popular ensemble
methods, there are bagging [76] and boosting [136]. Because of the very impressive results
obtained by these methods, a lot of research has been carried out recently in this domain

36, 97].

2.4.1 Bias and Variance Decompositions

The bias variance decomposition is a method to measure the response and sensitivity of a
learning algorithm to the training data. For example learning methods that build prediction
models describing perfectly the training or sample data, i.e. a very small training error, have
a high variance and they are quite sensitive to the changes of the training set. Meaning that
maybe for another random sample the model could be very different from the first one. This
is already illustrated in figures 2.2 and 2.3. In figure 2.2 a decision tree classifier builds
a model trying to control the bias/variance trade-off and finding a near optimal solution.
However, in figure 2.3 two models are shown either displaying high bias and low variance

(left) or low bias and high variance (right).

Consider a bias/variance decomposition for classification. Let (X, t) where X = X3, X, ...

be an example where t is the target value and X is the vector of the predictive attributes.
Considering a series of models constructed from B random samples QLS7,QLSy, ..., QLSE,

and then are applied to the test set {27g. The error of a learning algorithm for a specific ex-
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ample (X, 1), is decomposed in two dimensions namely the bias, and the variance, according

to the following formula :
Error(X) = Bias(X) + kVar(X).

Where, X € ZiB;l X (Qrs;) and k is a parameter that depends on the specific example

(explained below).

2.4.1.1 Bias

The bias measures how far are the predictions that a learning algorithm does for an example
(X, t) from the the optimal prediction, ¢*. As optimal prediction we consider the prediction
that the optimal classification algorithm does which in the case of 0/1 loss function is the
Bayes classifier. For classification and 0/1 loss function, L, the bias is given by : Bias(z) =
L(c*,cyu). Here, ¢, is called the most probable prediction or the central tendency for the
instance (X, t). The bias can only take two values, 0 or 1 i.e unbiased or biased. To compute
¢y for an instance (X, t) of the test set, we need to get all the predictions for that instance

from different models, and then find the prediction that appears most often, this will be the

Cp-

2.4.1.2 Variance

In the case of classification variance measures how the predictions of a learning algorithm
for a specific instance, derived from the B different training sets, fluctuate around the most
often prediction ¢, associated with that example. The variance for an instance (X, t) is

given by the following formula:

Var(X) =YX € Y8, X(Qrs,)c # ¢4
or Var(X) = Pp(c # cp)

Thus, we calculate the variance as the percentage of times, that the prediction of the
learning algorithm is different from the prediction c,,.
In the same way as above the error Error(X) of a learning algorithm for an instance

over a series of B models constructed from different training datasets can be written as :
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Error(X) =VX € Y8 X(Qps,)t # ¢
or Error(X) = Pp(t # ¢)

Which is the percentage of times that the prediction ¢ from the B different models differs
from the target value t.
Now, we take the initial decomposition and replace error and variance with the associated

probabilities we have:

Error(z) = Bias(x) + kVar(z)
Pp(t # ¢) = Bias(x) + kPp(c # c,)

The parameter k depends on whether the examined instance x is unbiased or not.

e If x is unbiased, i.e. B(x) — 0 then we set k — 1 and the error decomposition becomes:

Error(z) = Bias(x) + kVar(x)
Po(t #¢) = Po(c £ c)

What actually is stated here is that the error in predicting the target value of x comes
only from the variance of the learning algorithm due to the use of different learning

sets.

o If x is biased, i.e. B(x) — 1 then we set £k = —Pp(c = t|c # ¢,). This value of ¢
corresponds to the probability of getting a correct prediction ¢ for x given that this
prediction is different from the most often prediction ¢,, which since the example is

biased is false. In this case the error decomposition becomes :

Error(z) = Bias(x) + kVar(z)
Pg(t #c) =1— Pp(c=tlc# c,)Pp(c # cu)
Pp(t#c¢)=1—Pp(c=t,c#cu)

In this case the error is 1 minus the percentage of times that the prediction is correct
and different from the most often prediction c,, (these are the cases that we get a

correct prediction for x).
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2.5 Variance Reduction Techniques

As suggested by various previous works, the main problem of these learning methods such
as decision trees is not bias because we can always build complex algorithms and models
to cater to this problem. But as far as variance is concerned the more complex the model
becomes the higher is the probability that variance will increase with it because we use
random learning samples to build these complex models. The increased interest in variance
reduction has been there since a decade and various variance reduction techniques have been
presented [97, 21, 36]. The reason for that is the fact that automatic learning techniques have
been applied in many complex domains due to a drastic increase in computer power. But,
these improvements in representational power of the learning algorithms will be useless if
they are not combined with some variance reduction techniques. In [97], variance reduction

techniques have been classified into two main families:

e Techniques that find the best bias/variance trade-off for one particular learning algo-

rithm.

e Techniques that change the bias/variance configuration of a learning algorithm.

2.5.1 Aggregation and Resampling Techniques

The techniques described in this section, try to maintain the average bias of the learning
method but in doing so try to decrease the variance to a minimum. Thus, they generate by
using different original methods a set models or predictions and then aggregate these models
or predictions using a voting or an averaging scheme. By doing so they aim to produce a
more accurate and stable prediction. These aggregation techniques differ in the way they
aggregate the predications from the base algorithm. Without being exhaustive we present

two popular aggregation techniques.

2.5.1.1 Bagging

Bootstrap aggregating (bagging) [76, 36| is an ensemble learning method that uses perturb

and combine scheme to improve the robustness and classification accuracy. It also reduces
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variance and helps to avoid overfitting. Given a learning sample Qg of size n, bagging gen-
erates b new training sets n/, by resampling examples from Qg by bootstrap. A description
of bootstrapping techniques is given in the next section. A model mgq, is build from each
of these resampled training sets 21, ..., ), whose output is the class predicted most often by

the classifiers or we can also say that we take the majority vote classifier.
m*(X (w)) = arg maz 320_y I(mg, (X (), ¢))
or the average model of all the predictors (used typically in regression).
m*(X(w) = § Xi=1 ma, (X (w), )

The idea of bagging is to find based on an estimation of the average model which has a

zero variance and the same bias as the original algorithm.

2.5.1.2 Boosting

The boosting algorithm by Schapire [102] was designed as a method for boosting the per-
formance of a weak learning algorithm. Like bagging, the AdaBoost.M1 algorithm [136],
the most popular boosting algorithm, sequentially generates weighted learning samples and
models are built. In each weighted learning sample, each object has a weight allocated based
on the previously built model in the sequence. The incorrect classified objects are weighted
by a factor inversely proportional to the error on the learning set. A final model is formed
by using a weighted majority vote, where the role of weights is to give higher influence to
the more accurate models in the sequence.

While the perturbations on a given learning set introduced by bagging are random and
independent, the perturbations introduced by boosting are chosen deterministically and
serially, and are dependent on all of the previously generated models. Empirical results show
that among the averaging methods, boosting (as well as error-correcting output coding) can
equally reduce model bias along with the correction in variance. The main problem with

boosting seems to be the robustness to noise [21].
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2.6 Resampling by Bootstrap

Bootstrapping technique by Efron (1979) [9] is a statistical inference based approach that
builds a sampling distribution for a statistic by sampling it with replacement from the
data at hand. Suppose that we draw a sample Qg = xz1,x2,...,x from a population
P = X1, Xo,..., Xy; and that 2gg is a simple random sample.

Now suppose that we are interested in finding some statistic 7' = ¢(€2pg) as an estimate
of the corresponding population parameter 7% = ¢(P). Normally, any kind of statistical
inference makes assumptions about the structure or distribution of the population but in
certain instances, the exact distribution of T may be intractable, and so we instead derive
its asymptotic distribution. However, if the assumptions about the population are wrong,
then the corresponding sampling distribution of the statistic may be seriously inaccurate.
On the other hand, if asymptotic results are relied upon, these may not hold to the required
level of accuracy in a relatively small sample.

In contrast, the nonparametric bootstrap allows us to estimate the sampling distribution
of a statistic empirically without making assumptions about the form of the population. In
addition it keeps from deriving the asymptotic distribution. The central idea behind the
nonparametric bootstrap is as follows:

We proceed to draw a sample of size n from among the elements of {2pg, sampling with
replacement. It is necessary to sample with replacement, because we would otherwise simply
reproduce the original sample 2pg. In effect, we are treating the sample g as an estimate
of the population P; that is, each element of Qg is selected for the bootstrap sample with
probability 1/n, mimicking the original selection of the sample Qpg from the population P.
We repeat this procedure a large number of times, B, selecting many bootstrap samples.

Next, we compute the statistic T for each of the bootstrap samples; that is Tpg = t(Q2ps).
Then the distribution of Tpg around the original estimate T is analogous to the sampling
distribution of the estimator T around the population parameter T*. For example, the

average of the bootstrapped statistics,

E(T*) = 5;1 %

estimates the expectation of the bootstrapped statistics; then Bias = T — T is an
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estimate of the bias of T, that is, T'— T™. Similarly, the estimated bootstrap variance of T
is:

Var(T*) = Y8, 0T

There are two sources of error in bootstrap inference: One of which is the error induced
by using a particular sample to represent the population. The other is the sampling error
produced by failing to enumerate all bootstrap samples. The latter source of error can be

controlled by making the number of bootstrap replications B sufficiently large.

2.7 Existing Studies

Among the existing studies of bias/variance trade-offs and variance reduction techniques in
supervised learning, the work of Pierre Guerts and Louis Wehenkel [97] stands out. They
provide a detailed analysis of these phenomena and provide solutions to control these trade-
offs. They identify different types of variance e.g. discretization variance in classifiers like
decision trees and present various aggregation techniques based on bagging and other per-
turb and combine methods to reduce these variances from classifiers.

In their thesis, Yang et al [140] analyze the bias/variance decompositions in discretization
for naive-bayes classifiers and the work of C.Olaru and L.Wehenkel [21] discuss the problem
of variance in decision tree induction and concentrate on fuzzy solutions to handle this type
of classifier variance.

Other studies like done by Eric Bauer and Ron Kohavi [36] study the bias/variance
decompositions in classifiers such as decision trees and variance reduction techniques like

bagging, boosting plus variants and their effect on this bias/variance decompositions.

2.8 Conclusions of this chapter

Automatic learning is necessary when it is impossible to analytically model a system. It
aims at building a model of a system whose task is to predict unseen situations by utilizing
already seen data samples. The quality of a model is calculating by its accuracy to predict,

its comprehensibility and complexity in terms of model building. In automatic learning
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bias and variance both contribute to the prediction error, whatever the learning problem,
algorithm and sample size. The error decomposition allows us to better understand the
way an automatic learning algorithm will respond to changing conditions. It allows us to
compare different methods in terms of their weaknesses. This understanding allows us to
select methods in practice, to study their performances, and to guide us in order to find
appropriate ways to improve automatic learning methods.

The resulting errors in classifiers such as decision tree learners are mostly due to very
high variance, which significantly decreases the attractiveness of this method in spite of
their other intrinsic qualities. In order to improve these methods it is necessary to find a
way to reduce variance, ideally without jeopardizing other important features. Aggregation
methods such as bagging, boosting and resampling (by bootstrap) variants aim at reducing

variance and thus, improving prediction rates and other qualities of these classifiers.

28



